Johns Hopkins University

MAaTtH 304

Egbert Rijke

/ )
\\ 7%*

~— -

Elementary Number Theory

Fall 2025






Cover image: Vieta jumps between the rational points on the unit circle eventually reach one of the
points (1,0), (0, 1), (=1,0), or (0, —1). See Section 7.4 for a full explanation.






Contents

Contents
List of Figures
Course Information

Introduction

I The Logic of Numbers

1 The Nature of Numbers

1.1 The Concept of Number Through History . . . . ... ... ... ... ....
1.2 Recursion and Induction . . . . . . . ... .. e
1.3 Addition of Natural Numbers . . . . . . . .. ... ... ... ... ... ....
1.4 Arithmetic of Natural Numbers . . . . . . . . . ... .. .. ... .. ......
1.5 Finite Sums and Products . . . . . . . .. .. ... ... ... .. .. .. ...
1.6 Hemachandra’s Counting Problem . . . . . .. ... ... ... .........
Exercises . . . . . ... e

2 Counting

2.1 Hume’sPrinciple . . . . . . . . . . .. e
2.2 Equivalent Ways of Defining Bijections . . . . . . ... .. ... .. ......
2.3 Counting Bijections . . . . . . . ...
24 Counting Subsets . . . . . . . . e e e e e e e e
2.5 The Binomial Theorem . . . . . . .. . .. ... ... .. .. .. ...,
2.6 The Inclusion-Exclusion Principle . . . . ... ... ... ... ... ......
EXercises . . . . . . . e e e

3 The Integers
3.1 CyclicSets . . . . . o e e e e e e e
3.2 Maps Preserving Cyclic Structure . . . . . . . .. . ... ...

vii

ix

xi

10
12
13
15
18

21
21
25
26
28
33
34
36



il

I1

3.3 A Structural Definition of the Integers
3.4 Constructing the Integers from the Natural Numbers
Integer Arithmetic
Exercises

3.5

From the Ancients to Fermat

Euclidean Division and Representability

4.1
42
4.3
4.4
4.5

Linear Diophantine Equations

5.1
5.2
5.3
54
5.5
5.6

The Rational Numbers
Integer Fractions

The Irrationality of Square Roots
Continued Fractions
Farey’s Series of Fractions
A Structural Definition of the Rational Numbers
Exercises

6.1
6.2
6.3
6.4
6.5

Pythagorean Triples

The Pythagorean Theorem
Euclid’s Parametrization of the Pythagorean Triples
Rational Points on the Unit Circle
The Tree of Primitive Pythagorean Triples
Squares in Arithmetic Progressions
Exercises

7.1
7.2
7.3
7.4
7.5

Notation for Numbers
The Well-Ordering Principle of the Natural Numbers
Euclidean Division
The Representability Theorem
Combinatorial Applications
Exercises

Divisibility

Ideals of Integers
The Ordering by Divisibility
Greatest Common Divisors

Euclid’s Algorithm
Linear Diophantine Equations in Multiple Variables
Exercises

CONTENTS



CONTENTS

8 Infinite Descent
8.1 The Method of Infinite Descent . . . . . .. ... ... ... ...........
8.2 The Area of a Pythagorean Triangle isnota Square . . . . .. ... ... ....
8.3 The Unsolvability of x* +y*=z* . . . .. ... ... ... ... ... ... ..
8.4 The Nonexistence of Four Squares in an Arithmetic Progression . . . . . .. ..
8.5 The Congruent Number Problem . . . . .. ... ... .. ............
8.6 VietaJumping . . . . . . . . .. e e e e e

Exercises

III Congruences

9 Modular Arithmetic
9.1 The Congruence Relations . . . . ... ... ... ... ... .. ... .....
9.2 EquivalenceRelations . . . . . . ... .. ... ... .. .. .. e
9.3 Equivalence Classes and Residue Systems . . . . . ... ... ... .......
9.4 Thelntegers Modulon . . . ... ... ... .. .. .. .. .. . .
9.5 The Multiplicative Order of an Integer Modulon . . . . ... ... ... ....

Exercises

10 Systems of Linear Congruences
10.1 Solving Linear Congruences . . . . . . . . . . .. oo v v i
10.2 Solving Multiple Linear Congruences Simultaneously . . . . . . . .. ... ...
10.3 The Chinese Remainder Theorem . . . . . .. ... .. ... .. ........
10.4 A Method Suggested by Gauss . . . . . ... ... ... o

Exercises

IV Prime Numbers

11 Prime Numbers
11.1 The Fundamental Theorem of Arithmetic . . . . . ... ... .. ... .....
11.2 The Infinitude of Primes . . . . . . . . . . . . . . . . ...
11.2.1 Saidak’s Proof . . . . . . . . . . . ...
11.2.2 Furstenberg’s Proof, Following Cass—Wildenberg . . . . . . .. ... ..
11.2.3 Erdés’sProof . . . . . . . . . . . . ...
11.2.4 A Proof via the Stars-and-Bars Method . . . . . ... ... ... ....
11.3 Fermat Primes . . . . . . . . . . . . e
11.4 Legendre’s Formula and Kummer’s Theorem . . . ... ... .. ... .. ...
11.5 Bertrand’s Postulate . . . . . . . . . . . . . . . . .. e

Exercises

il

129
129
130
131
132
133
135
137

139

141
141
146
149
151
153
157

159
159
161
162
163
165



v CONTENTS

12 Multiplicative Functions 193
12.1 Perfect Numbers . . . . . . . . . . . e 193
12.2 Euler’s Totient Function . . . . . . . . . . . . ... ... ... ... ... .... 196
12.3 Multiplicative Functions . . . . . . . . ... .. Lo 199
12.4 The Mobius Function . . . . . . . . . . . . . . . . .. e 201
12.5 Dirichlet Convolution . . . . . . . . . . . . . . e e 203
12.6 Dirichlet Inverses . . . . . . . . . . e 204
Exercises . . . . . ... e 207

V Fermat’s Discoveries Regarding the Primes 211

13 Fermat’s Little Theorem and its Consequences 213
13.1 Fermat’s Little Theorem . . . . . . . . . . . . ... .. . . ... . ...... 213
13.2 Euler’'s Theorem . . . . . . . . . . . . . i e 217
13.3 Wilson’s Theorem . . . . . . . . . . . . . . . . e 218
13.4 Lucas’sTheorem . . . . . . . . . . . . . . . . . 219
13.5 The Quadratic Characterof =1 . . . . . .. . ... ... ... ... ....... 220
13.6 The Infinitude of Primes Congruent to 1 Modulo Powersof 2 . . . . . . ... .. 223
Exercises . . . . . . .. e e e e e e 224

14 Fermat’s Two-Squares Theorem 227
14.1 Numbers Representable as a Sum of Two Squares . . . . .. ... ... ..... 227
14.2 Euler’s Proof by Infinite Descent . . . . . . . . ... ... ... .. ....... 232
EXercises . . . . .. e e 233

VI The Law of Quadratic Reciprocity 235

15 Polynomials 237
15.1 Polynomials with Integer Coefficients . . . . . . ... ... ... ........ 237
15.2 Derivatives of Polynomials . . . . . ... ... ... ... ... ... .. ..., 239
15.3 Lagrange’s Interpolation Theorem . . . . . .. ... .. .. ... ........ 241
15.4 Fixed Divisors of Integer Polynomials . . . . ... ... ... ... ....... 245
Exercises . . . . . .. e e e 247

16 Polynomial Congruences 249
16.1 Polynomial Congruences of Prime Moduli . . . . ... ... ... ........ 249
16.2 Polynomial Congruences of Composite Moduli . . . . ... ... ... ..... 251
16.3 Hensel’sLemma . . . . . . . . . . . . . . . . . e 252

EXErciSes . . . . . o o e e e e e 254



CONTENTS

17 Primitive Roots
17.1 Counting Elements of a Given Order Modulo a Prime
17.2 Primitive Roots . . . . . . ... .. ... ......
17.3 The Discrete Logarithm . . . . . ... ... .. ...
17.4 The Moduli with Primitive Roots . . . . . . . . . ..
17.4.1 Primitive Roots Modulo Odd Prime Powers .

17.4.2 The Complete Characterization of Moduli with Primitive Roots . . . . .

17.5 A Criterion for Congruences of Degreen . . . . . .
Exercises . . . . . ...

18 Quadratic Residues
18.1 Quadratic Congruences . . . . . . ... .......
18.2 Quadratic Residues . . . . .. ... ... ......
18.3 Legendre Symbols . . . . ... ... ........
18.4 Euler’s Criterion . . . . . .. .. ... .......
18.5 Euler’s Prime-Generating Polynomial . . . . .. ..
Exercises . . . . . . . ... ..

19 Quadratic Reciprocity
19.1 The Quadratic Characterof2 . . . . ... ... ...
19.2 The Statement of Quadratic Reciprocity . . . . . . .
193 Gauss’sLemma . . . .. ... ... .........
19.4 FEisenstein’sProof . . . . .. ... ... .......
Exercises . . . . . .. . ... ... e

20 Conjectures in Elementary Number Theory

20.1 Conjectures About the Infinitude of Certain Classes of Primes . . . . . . .. ..

20.2 Conjectures About Exceptional Primes . . . . . . . .
20.3 Conjectures About Gaps Between the Primes . . . .
20.4 Conjectures About Conditions for Primality . . . . .
20.5 Conjectures About Prime Decompositions . . . . . .
20.6 Conjectures About Arithmetic Functions . . . . . . .
20.7 Conjectures About Diophantine Problems . . . . . .
20.8 Conjectures About Representations of Numbers . . .
20.9 Conjectures About Iterative and Dynamical Processes

References

255
255
258
260
261
261
263
264
267

269
269
271
272
274
275
278

281
281
284
289
290
294

297
297
299
299
300
300
301
301
303
303

305



Vi

CONTENTS



List of Figures

W N =

1.2

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
33
34
3.5
3.6

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Euclid of Alexandria . . . . . . . .. .. ... . ... xii
Pierrede Fermat. . . . . . . . .. . ... Xxiii
Leonhard Euler . . . . . . . ... . ... ... .. Xiv
Carl Friedrich Gauss . . . . . . . . . ... XV
Some Hemachandra tilings of a I-by-19 grid . . . . . . ... ... ... ..... 15
Hemachandra tilings of a 1-by-5grid . . . . . . ... ... ... ... .. .... 16
ADbIjection . . . . . ... e e e e e 22
Notabijection. . . . . . . . . .. . e 23
Notabijection . . . . . . . . . . . e e 23
Composition of bijections . . . . . . . . . . ... 23
Pascal’striangle . . . . . . . . . .. . 30
Parity in Pascal’s triangle . . . . . .. ... ... ... .. . 39
A bijectionon a 12-elementset. . . .. ... ... ... .. 41
Acyclicsetwith 12elements . . . . . . . . .. ... ... ... . .. 42
A cyclic-structure map from a 14-element set to a 7-elementset. . . . . . . . .. 43
Cyclic-structure maps . . . . . . v v v v v v e e e e e e e e e e e e 44
The infinite cyclic set of integers . . . . . . . . . .. ... ... ... ..., 45
The set of integers along the axis of the positive quadrant . . . . . .. ... ... 48
Lattice points in a parallelogram . . . . . . .. . ... .. ... ... 86
The Farey fractions with their adjacency relation . . . . . . . ... ... ... .. 96
A diagram in the Jackson-Johnsonproof . . . . . . ... ... ... .. 104
The Babylonian tablet Plimpton 322 . . . . . . . ... ... ... ... .... 105
Rational points on the unitcircle . . . . . ... ... ... ... L. 110
Vieta jumps between rational points on the unitcircle . . . . . . ... ... ... 113
Aforest. . . . . . e 116
The forest of rational points on the unitcircle . . .. ... ... ... .. .... 117
The tree of primitive Pythagorean triples . . . . . . . .. .. ... ... ..... 119
Leonardo Pisano . . . . . . . . . . ... 120

vil



viii

7.9
9.1

11.1
11.2
11.3

13.1
13.2

14.1
14.2

15.1
17.1

19.1

LIST OF FIGURES

Differences of squares congruentto 1 modulo24 . . . ... ... ... ..... 121
The 12-hourclock . . . . . . . . . . . o 142
The sieve of Eratosthenes . . . . . . . . . .. .. ... ... .. 171
Example configurations of starsand bars . . . . . . ... ... ... ... 178
The 2-adic valuations of the numbersupto15.. . . . . . ... ... ... .... 182
Golomb’s proof of Fermat’s Little Theorem . . . . ... ... ... .. ..... 214
Carl Friedrich Gauss . . . . . . . . . . . . e 220
Sums of tWo squares . . . . ... .. e e e e e e e e 228
Thue’sLemma . . . . . . . .. . . e 231
Example polynomial obtained by Lagrange interpolation . . . .. .. ... ... 242
Doubling integers modulo 13 . . . . . . . . .. ... oL 256

Eisenstein’s proof of quadratic reciprocity . . . . . . . . . ... ... ... 291



Course Information

Important Dates

@)

(i)

(i)

First lecture: August 26th.

First midterm: Friday September 26th
Fall break: 16-17 October

Second midterm: November 7th
Thanksgiving break: 24-28 November
Final lecture: December 2nd

Final exam: December 4th, 9-10:15AM.

Midterm 1 covers mathematical induction, counting with finite sets, the integers, Euclidean
division, the representability theorem, divisibility, greatest common divisors, Euclid’s algo-
rithm, rational numbers, finite continued fractions, Pythagorean triples, infinite descent.

Midterm 2 covers congruences, the Chinese remainder theorem, prime numbers, Legendre’s
formula, Kummer’s theorem, arithmetic functions, Fermat’s little theorem, Euler’s theorem,
Wilson’s theorem, Lucas’s theorem, the quadratic character of —1, Fermat’s two-square
theorem.

The final exam covers the entire course, including polynomials, polynomial congruences,
primitive roots, quadratic residues, and quadratic reciprocity.

Grading

The course grade will be determined as follows:

¢ Homework: 60%
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* Each exam (two midterms and final): 15% each

This adds up to a total of 105%, allowing students the opportunity to earn extra credit. The
grading scale is as follows:

e > 100%: A+

90-100%: A

80-90%: B

70-80%: C

60-70%: D
* <60%: F

If the median score for the class falls below a B, grades may be curved so that the median
corresponds to a B. Any adjustments will be made consistently for all students.



Introduction

Number theory is the study of numbers, particularly the natural numbers (the numbers 0, 1,2, . ..
increasing indefinitely in increments of 1), the integers (the numbers ..., -2,-1,0,1,2,...), and
occasionally the rational numbers (fractions of integers). Its central themes include questions
about divisibility, modular arithmetic, prime numbers, arithmetic functions, and finding integer
solutions to equations. Additionally, number theory explores the question whether numbers can be
represented in a certain form, such as a sum of two, three, or four squares, as a product or sum of
primes, or as the area of a Pythagorean triangle. Paired with such representability questions is the
combinatorial question of determining the number of ways a number can be so represented. More
advanced branches of number theory are occasionally also concerned with obtainin quantitative
bounds or other forms of approximation of certain aspects of numbers, which naturally leads to
the use of other number systems, such as the real numbers, complex numbers, or p-adic numbers.
However, in elementary number theory these explorations are primarily motivated by how these
number systems relate back to the integers.

The diversity of the kinds or inquiry described above has led to a wealth of mathematical
techniques, methods of proof, and advanced concepts, and number theory remains a very active field
of study to this day. The aim of this course is to introduce some of the most fundamental ideas upon
which number theory is built. Some of these ideas you might already know or have heard about:
prime numbers are the building blocks of numbers; mathematical induction is a proof technique
to formally prove properties of all natural numbers; and the idea that some of the most frequently
occurring numbers can be arranged geometrically such as in triangles, squares, pentagons, and so
on. An important aspect of the course is to learn how to make these intuitive ideas mathematically
precise. Once we have developed a solid foundation, we will start building the edifice of number
theory.

Concretely, we set out the following learning objectives for this course:

* Explain the structure of different number systems such as the natural numbers, the integers,
the rational numbers, modular arithmetic, and the Gaussian integers, along with the methods
of proof for properties involving each of them.

* Write mathematically rigorous proofs which demonstrate a clear progression of ideas and
clearly state the principles of proof involved such as unique existence, mathematical induction,

the well-ordering theorem, and the method of infinite descent.

X1



Xxii INTRODUCTION

* Solve some challenging number-theoretic problems, including selected contest-style prob-
lems.

* Apply some of the central theorems of elementary number theory, including Fermat’s little
theorem, Fermat’s two-squares theorem, quadratic reciprocity, and Pell’s equation.

A Short History of Number Theory

Number theory has a long history that dates back to antiquity.
One of the earliest and most influential systematic treatments
of mathematics is Euclid’s Elements [Euc2015], written around
300 BCE in Alexandria. In this work, Euclid established several
key results in number theory, including the infinitude of primes
and the algorithm for finding the greatest common divisor, which
bears his name.

Around 250 CE, the Greek mathematician Diophantus of
Alexandria wrote his Arithmetica [Dio1910], which focused on
solving equations with integer coefficients in one or multiple
unknowns. This 13-volume work is often considered the first
comprehensive treatment of algebra, though Diophantus relied
on rhetorical descriptions rather than modern algebraic nota-
tion. Only six of the original volumes have survived, but they
profoundly influenced later mathematicians.

The works of E}Jclid and Di(.)phantus‘ were preserved and Figure 1: Euclid of Alexandria.
studied by scholars in the Byzantine Empire, such as Theon of | . . engraving by S. Beyssent af-
Alexandria and his daughter Hypatia. They added commentaries (e Mile. C. Reydell.
that clarified and expanded upon the original text.

During the Islamic Golden Age, scholars like Al-Khwarizmi, Ibn al-Haytham, and Omar
Khayyam preserved and expanded upon the works of Euclid and Diophantus. Al-Khwarizmi’s
work, especially his Kitab al-Mukhtasar fi Hisab al-Jabr wal-Muqgabala (from which the term
“algebra” originates), introduced systematic methods for solving linear and quadratic equations. He
used rhetorical algebra, like Diophantus, but began a transition toward symbolic representation by
relying on consistent terminology for operations and equations.

After the invention of the printing press, Erhard Ratdolt, a German printer based in Venice,
produced the first printed edition of the Elements in 1482. This edition included mathematical dia-
grams and marked an important step in the dissemination of Euclid’s work. The first printed edition
of Diophantus’ Arithmetica was published in 1575 by Wilhelm Xylander, a German mathematician.
The printing was done in Basel, Switzerland, which was a major hub for academic publishing at the
time. By the time of Pierre de Fermat in the 17th century, both the Elements and Arithmetica had
become essential texts for mathematicians across Europe, influencing the development of number
theory and inspiring Fermat’s groundbreaking contributions.
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Pierre de Fermat (1607-1665) is often considered the
founder of modern number theory [Mah1994; Weil1984]. He
was a contemporary of Blaise Pascal and Marin Mersenne, both
of whom he corresponded with, and also of Galileo Galilei.
He wrote a manuscript titled Eléments de Géométrie, which
served as an extension and commentary on Euclid’s Elements.
In this work, he sought to modernize Euclid’s geometry by ap-
plying the emerging methods of algebra and analytic geometry
to classical geometric problems.

Fermat made several groundbreaking contributions to num-
ber theory. Among his most influential contributions is Fer-
mat’s Little Theorem, which states that if p is a prime number,
then

a’ =a (mod p).
) ] ] ) Figure 2: Pierre de Fermat. Engraving
This theorem is key to many further results in modular arith- ;;, Oeuvres Mathématiques Diverses.

metic, and has modern applications in RSA encryption. Fermat

also came up with the method of infinite descent, which allows

one to show that a certain equation or proposition cannot hold by showing that it would lead to an
infinite descending sequence of positive integers. Fermat was very fond of this method, and used it
brilliantly to prove some of his most profound claims. For instance, the case n = 4 of Fermat’s Last
Theorem, which states that there are no positive integers x, y, and z such that x* + y* = z* is proven
using infinite descent. In order to prove this fact, Fermat also showed that the area of a Pythagorean
triangle is never a perfect square. Fermat is furthermore famous for the Two-Squares Theorem,
which states that any prime p = 1 (mod 4) can be written uniquely as a sum of two squares, and
that primes p = 3 (mod 4) cannot be written as a sum of two squares. Fermat also claimed that
any number can be written as the sum of at most three triangular numbers, as the sum of four
squares, as the sum of five pentagonal numbers, and so on, but he did not indicate how these claims
might be proven. The case of the triangular numbers is now known as Gauss’s Eureka Theorem, the
Four-Squares theorem was proven by Lagrange, and Cauchy proved the general theorem asserting
that any number can be expressed as the sum of at most n n-gonal numbers.

Fermat also made several famous conjectures. He conjectured that the equation x> + Ny? = 1
has infinitely many solutions for any non-square integer N. Euler made a significant advance to this
problem by proving it for specific values of N. The general form of the solution to equations of the
form x2 + Ny? = 1 was found later by Legendre and Lagrange.

Finally, Fermat famously asserted that there could be no three positive integers x, y, and z such
that the equation

X"+ yn = 7"
holds, when n > 3. This statement is now known as Fermat’s Last Theorem. He claimed to have a
“truly marvelous proof”, but that the margin of his copy of Arithmetica was too small to contain
it. His assertion, known as Fermat’s Last Theorem, captivated mathematicians for centuries. It
was finally proven in 1995 by Andrew Wiles, about 350 years after Fermat made his famous note



Xiv INTRODUCTION

in the margin, using advanced techniques from algebraic geometry and modular forms. Wiles’s
achievement is considered one of the most remarkable milestones in the history of mathematics.
While Fermat laid the groundwork for modern number
theory, we should mention that the concept of function hasn’t
been crystallized until Leibniz coined the term in 1673, us-
ing it to describe quantities related to curves, such as slopes,
tangents, and areas. Bernoulli played a significant role in ex-
panding the idea of functions. He used the term explicitly in
1718, describing it as a quantity dependent on another vari-
able. Euler provided the first modern definition of a function in
his Introductio in Analysin Infinitorum (1748) [Eul1988]. He
emphasized that functions could include both algebraic (e.g.,
polynomials) and transcendental forms (e.g., trigonometric and
exponential functions). Peter Gustav Lejeune Dirichlet was the
first to define functions abstractly as a correspondence between
two sets, removing the requirement for expressions or formulas.
This abstraction was a key insight for the theorem that we now
know as Dirichlet’s theorem: Every arithmetic progression

a, a+b, a+2b, a+3b, ...

) ) ) ) ) ) ) Figure 3: Leonhard Euler. Engraving
in which a and b are coprime, contains an infinitude of primes. by Friedrich Weber.

Dirichlet proved his theorem in 1837, more than 150 years after Leibniz first coined the term of
function.
Euler’s Introductio in Analysin Infinitorum marked the beginning of analytical number theory.
As we mentioned before, Euler defined functions here and established the notation f(x) of a
function applied to its variable, which we still use today. He derived the famous formula for complex
exponentials
e™ = cos(x) + i sin(x).

This identity connects the exponential function, trigonometric functions, and the imaginary unit.
The Riemann zeta function £ (s) makes its first appearance here in a complex variable s, and he
derived the celebrated product formula

o 1 1
§(S)=Z:;;= [ =

p prime

More generally, Euler explored infinite series and products. The Basel summation formula
i I n?
~=—
~in 6

was first proven here, which was one of Euler’s most celebrated achievements. Euler was keen to
explore the connection between geometry and analysis, and in Introductio in Analysin Infinitorum,
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he advanced the idea that the study of functions and infinite series could provide new insights into
geometric problems. He showed how techniques from analysis could be used to solve problems in
geometry and vice versa, fostering the development of applied mathematics.

Building on the work of Euler, Gauss began using the prop-
erties of the zeta function and other analytic methods to in-
vestigate the distribution of the primes. His seminal work
Disquisitiones Arithmeticae [Gaul986] is often considered
the starting point of the study of the distribution of primes,
ultimately leading up to the Prime Number Theorem. Gauss
conjectured that the number 77(n) of primes below a number
n satisfies the asymptotic law

n(n)

" log(n)’

This conjecture was proved independently by Jacques
Hadamard and Charles Jean de la Vallée Poussin. Further-
more, Gauss laid the foundation for modular arithmetic, and
proved the celebrated law of quadratic reciprocity, which tells Figure 4: Carl Friedrich Gauss. Paint-
us when a quadratic equation modulo a prime number is sOlV- jng by Christian Albrecht Jensen.
able. More precisely, it states that if ¢ = 1 (mod 4) then

the congruence x> = p (mod g) is solvable if and only if the

congruence x> = ¢ (mod p) is solvable.

A brief remark on the interesting etymology of the word theorem is in order. The English word
theorem ultimately derives from the Ancient Greek Oepnuc (theorema), literally “that which is
seen”, and by usage in classical philosophy as an “object of contemplation”. The verb fswpev
(theorein, “to observe, examine”) and the agent noun fewpc (theords, “spectator’) are close relatives,
and ultimately give us both theorem and theory (Bswpa).

In Euclid’s Elements, specifically through the careful editorial work and commentaries of the
Byzantine scribes, we start seeing the label theoréma for statements that require deductive proof,
in contrast to the “givens” (wfeotg, hypothesis) and “proof” (wdet€ig, apodeixis). However, the
fixed label Theorema for such statements emerges more clearly in Medieval translations into Late
Latin and Middle French of the Elements, through the editorial adjustments made by his copyists.
The Late Latin word theorema and the Middle French word théoréme both retained the meaning
“proposition that is to be proved”.

Euclid’s Elements was first translated into English by Sir Henry Billingsley in 1570, who was
mayor of London at the time, with a preface written by John Dee. This Billingsley—Dee edition of
Euclid’s Elements established theorem in the English language as a word meaning ‘““proposition
that is to be proved”. Over the ensuing centuries, the word theorem came to mean exclusively a
mathematical assertion proven from axioms, definitions, and previously established theorems.

So far, we have covered some of the most celebrated advances in humanity’s understanding of
numbers up to the early 19th century. Mathematics has made rapid progress since then. Bertrand’s
postulate, which asserts that there is always at least one prime p between n and 2n, for any n > 1,
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was proven by Pafnuty Chebyshev in 1852, and Ben Green and Terence Tau proved in 2004 that the
sequence of prime numbers contains arbitrarily long arithmetic progressions.

The 20th century saw the emergence of the Langlands program, a far-reaching research program
that aims to connect number theory, representation theory, and algebraic geometry. With the
contributions of mathematicians like André Weil, Robert Langlands, and many others, the program
has shaped much of the direction of modern research in number theory and its applications to other
branches of mathematics.

Even today fundamental concepts such as sets and functions continue to evolve. We live in an era
of digital computation, with tools far beyond the reach of Fermat, Euler, and Gauss, where essentially
all recorded knowledge is readily available to almost anyone. This computational revolution has
also given rise to powerful tools like proof assistants—computer programs designed to construct
and formally verify mathematical proofs. Since proof assistants are programming languages, they
are often based on type theory rather than set theory, slightly changing the way mathematics is done.
Functions in type theory are even more general than Leibniz, Euler, and Dirichlet envisioned: unlike
in set theory where functions are a specific kind of relations between sets, functions in type theory
are primitive entities satisfying certain rules for evaluation, and they have an extra dependency built
in, allowing types of their outputs to depend on the input. Proof assistants are being used with great
success to formally verify advanced mathematical theorems. Georges Gonthier formally verified
the Four Color Theorem and the Odd Order Theorem, and Tom Hales verified Kepler’s conjecture
about sphere packings. A current effort led by Kevin Buzzard aims to formally verify Fermat’s Last
Theorem.

Today, number theory continues to be one of the most active and fruitful areas of mathematical
research, all of which started simply with counting on ten fingers.

Overview of the Course

An integer a is said to divide an integer b if there exists an integer x such that ax = b. In other
words, the number a divides b if the equation

ax=>b

has a solution in the integers. In this case we say that a is a divisor of b, and we write a | b. This
equation is the simplest example of a Diophantine equation. Diophantine equations are equations
expressed using variables, integers, and arithmetic operations. The primary goal of solving a
Diophantine equation is to find integers for each of the variables for which the equation is true. The
study of Diophantine equations is a cornerstone of number theory.
For example, the equation
x2-1=0

is a quadratic Diophantine equation with two solutions: x = +1. One of the most well-known
quadratic Diophantine equations is the equation

x2+y2 — Z2,
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which is a Diophantine equation in three variables. Its solutions are known as Pythagorean triples.
These triples, such as (3,4,5) and (5, 12, 13), corresponds to the side lengths of right-angled
triangles and have been studied since antiquity. Perhaps the most famous Diophantine equation is
Fermat’s equation

x}’l + yl’L - Zn,
which has no solutions for nonzero integers x, y, and z when n > 3.

In this course, however, we will not go as far as proving Fermat’s last theorem. The first target
of this course is the Fundamental Theorem of Arithmetic, which establishes the prime numbers
as the building blocks of all natural numbers. A number 7 is said to be prime if it has exactly one
divisor d | n such that d # n. If this is the case, then its unique divisor that is not equal to itself is
the number 1. The Fundamental Theorem of Arithmetic asserts that any nonzero natural number n
can be written as a product of primes

n=pip2--: Pk

and that this decomposition of n as a product of primes is unique up to the ordering of the primes.

In order to study divisibility properties more deeply, Gauss introduced in his Disquisitiones
Arithmeticae the congruence relations of modular arithmetic. Following Gauss, we say that a
number a is congruent to » modulo #, that is,

a=b (mod n)

if n | b — a. Gauss used this new formalism to study quadratic residues, the Chinese Remainder
theorem, and a variety of other problems in number theory, a thread we will also pick up on in this
course.

Some of the most important theorems in this context are Fermat’s Little Theorem, Euler’s
Theorem, and Wilson’s Theorem. Fermat’s theorem asserts that given any prime number p and any
number a that is not divisible by p we have

a’”'=1 (mod p).

Fermat’s theorem is an important ingredient in primality tests: If the congruence ¢! = 1 (mod n)
is false then the number n cannot be prime. Testing this congruence for several values of a is a simple
way of discovering that n is composite. This test is by itself, however, not conclusive because there
are some numbers, the Carmichael numbers, that satisfy Fermat’s congruence for all a relatively
prime to n.

Euler’s theorem is a sharper version of Fermat’s Little Theorem, but it involves a new function:
Euler’s totient function. Euler’s totient function ¢ counts the numbers less than n that are relatively
prime to n, which means that they share no common divisors with n other than 1. For example, if p
is a prime number then ¢(p) = p — 1 since every number 0 < n < p is relatively prime to p. Using
the totient function, Euler’s theorem asserts that the congruence relation

a®™ =1 (mod n)
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holds for any natural number n and any number a relatively prime to n. Euler’s theorem has
applications in cryptography.
Wilson’s Theorem states that a number p is a prime number if and only if the congruence

(p—-1!=-1 (mod p)

holds. Here, the exclamation mark is used for the factorial function: The number n! is the product
1 ---n of all the numbers from 1 through n. Wilson’s Theorem therefore gives another criterion for
primality testing.

Euler’s totient function is an example of an arithmetic function. Other such functions include
the function 7(n), which returns the number of divisors of a number n, the function o (n), which
returns the sum of the divisors of a number n, and the Mobius function u. These and other functions
have important relations between them, that we will investigate next. The Mobius inversion formula,
for instance, states that if f and g are two arithmetic functions, then we have

f) =Y g(d)  ifandonlyif g(n):Z,u(d)f(g).

din d|n

This result allows us to ”invert” summation relations involving divisors.

The Mobius inversion is only one aspect of an algebraic structure that is present on the set
of all arithmetic functions. Arithmetic functions can be multiplied by an operation known as
Dirichlet convolution, which gives the set of arithmetic functions the structure of a commutative
ring. Commutative rings are sets with operations of addition and multiplication satisfying the usual
laws of arithmetic, and having such a structure on a set gives us a great opportunity to study them
further. In our case, we get to study the primes more closely.

Experimentation is essential in number theory. By making lists of primes, lists of numbers that
can be written as the sum of two squares or sums of three squares, lists of square-free numbers,
and so on, you will start to gather data on numbers and perhaps start seeing patterns that might
otherwise feel elusive. At the end of this section, we have produced two number grids with the
numbers from 1 to 1584. The great masters all have endlessly created such lists to organize and
discover patterns in various kinds of numbers. Feel free to print it as many times as you like, and
color them according to your own rules, or whenever something in the course piques your interest.
Some exercises throughout the course will ask you to color this number grid in a certain way.

Literature

This course was originally designed to follow [And1994] fairly closely. One distinctive feature
of this book is that it presents many of the most important theorems from two perspectives: a
combinatorial one and an abstract one. This dual approach helps to clarify not only why these
results are true but also appreciate why they are natural and inevitable within the broader framework
of mathematics.



Xix

From the Fall semester of 2025 onwards, the course was redesigned to follow [Sil12012]. Silver-
man’s book encourages the reader to explore numbers, hypothesize their properties and relations,
and effectively teaches students how to generate ideas towards proving number theoretic theorems.
It is written a very accessible, conversational style, with practical examples and exercises.

There are many further excellent sources to learn number theory from. One of my personal fa-
vorites for its clarity and accessibility is LeVeque’s Topics in Number Theory [LeV 1956a; LeV 1956b].
Both Andrews’, Silverman’s, and LeVeque’s textbooks contain plenty of exercises, most of which
are very fun.

The undisputed classic textbook on number theory, which is warmly recommended for any
aspiring number theorist, is Hardy and Wright’s Introduction to the Theory of Numbers [Har+2008].
This book covers all the essential topics in number theory, including elementary number theory
and analytical number theory. It is more comprehensive and also provides more historical notes.
The textbook of Hardy and Wright does not provide exercises, but it contains the proofs of many
important facts in number theory that are stated as exercises elsewhere.

Online resources

There are plenty of ways to learn number theory and engage with communities of mathematicians
and students online. First and foremost, Wikipedia has many excellent pages on topics from and
related to number theory. The website math.stackexchange.com is dedicated to answering any
kind of mathematical question, although more research-oriented questions are usually posed on
mathoverflow.net. The website artofproblemsolving.com is dedicated to contest mathematics and
the problem-solving techniques necessary to do well in competitions such as the International
Mathematical Olympiad.

Furthermore, there are some popular channels on video-sharing sites such as YouTube, Twitch,
and TikTok. We mention some of the most notable:

(i) Lectures:

(a) Richard Borcherds is a Fields Medalist who has recorded many of his Berkeley lectures
and made them available on YouTube. The topics of his lectures are always well-
motivated and presented with great clarity.

(i1) Problem solving:
(a) Michael Penn has an excellent YouTube channel in which he solves mathematical

problems on a blackboard, at roughly the level of this course.

(b) vEnhance (Evan Chen) is an IMO gold medalist and the author of the wonderful book
Euclidean Geometry in Mathematical Olympiads [Che2016]. He streams live solves of
Olympiad math problems on Twitch, and his videos are also available on YouTube.
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(c) OmegaLearn is Jonathan Huang’s YouTube channel focused on solving IMO problems.
Some of his playlists dive deeper into specific techniques, such as Fermat’s method of
infinite descent.

(d) Blackpenredpen is Steve Chow’s problem-solving channel, covering topics in calculus,
algebra, and number theory.

(ii1) Mathematics for a broad audience:

(a) 3BluelBrown explores a variety of topics related to computer science and mathematics
using compelling visualizations.

(b) Mathologer is Burkard Polster’s YouTube channel for recreational mathematics. Many
of his videos contain elegant visual proofs; his videos on Fermat’s Two-Square Theorem,
the Quadratic Reciprocity Theorem, and Euler’s pentagonal theorem are especially
worth watching.

(c) Numberphile is a long-running YouTube channel by Brady Haran, featuring mathemati-
cians who explain a variety of mathematical phenomena, including topics in number
theory. A closely related YouTube channel is Tom Rocks Maths, by Tom Crawford.

(d) PeakMath has an excellent series on the Riemann Hypothesis, called the Riemann
Hypothesis Saga, in which they topics such as the Langlands program and the Birch—
Swinnerton Dyer conjecture are made accessible.

You might also enjoy joining some Discord servers, such as the Art of Problem Solving (AoPS)
Community Server, the Math Stack Exchange Discord, or the Omegal.earn Server. If you are
interested in formalization of mathematics, using proof assistants such as Agda, Lean, or Rocq,
you’ll also find thriving online communities that are focused on building large libraries of formalized
mathematics. Lean’s Natural Numbers Game is especially worth trying, especially if you are new to
induction and recursion. This set of lecture notes is currently being formalized in the agda-unimath
library.

Finally, you might find generative Al tools such as ChatGPT useful in exploring mathematical
topics. These tools are helpful because you can ask them to explain any topic that interests you, and
the quality of their answers is quickly improving with each new version. Be careful, however, to
ensure you understand the answers for yourself. Al-generated reasoning is not always reliable.
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The Logic of Numbers






Chapter 1
The Nature of Numbers

Learning Objectives

In this chapter we discuss the trajectory through history that led to the modern definition of natural
numbers, or the nonnegative integers. We embark on this journey in order to give a solid foundational
footing to our subject. We will also make a first encounter with the idea of structural definitions;
definitions of sets made entirely in terms of constants and functions. At the end of this chapter we
will dive into a mathematical question posed by ancient Indian poets.

After having worked through this chapter, you will be able to:

(i) Articulate the need for precise definitions of such basic objects as the natural numbers.
(i1) Make recursive definitions.
(iii) Write rigorous proofs by induction.

Learning induction and recursion is like learning to ride a bycicle: It is fun, it opens the door to
proving lots of beautiful identities, and once it is learnt you will not unlearn it.

1.1 The Concept of Number Through History

Many people are familiar with numbers through everyday experiences like counting, measuring, or
comparing quantities. From a young age, we develop an intuition about how numbers behave. Our
experience with numbers reveals patterns and properties that seem to always be true. For example,
we quickly learn that it does not matter in which order we add two numbers: Given two numbers a
and b it is always true that a + b = b + a. Truths such as this one seem so self-evident that we might
be tempted to just accept them. However, for a rigorous mathematical theory we need to be more
careful. Mathematicians require proofs. Checking a property for every number up to a hundred, a
million, or even 10?7 might confirm a pattern, but infinitely many numbers remain beyond such
finite checks. Mathematical proofs, on the other hand, are logical arguments that establish beyond
any possibility of doubt why certain properties hold universally for all numbers, or at least for

3



4 CHAPTER 1. THE NATURE OF NUMBERS

precisely defined sets of numbers. To reason about all natural numbers at once, we need formal
principles that extend beyond empirical observation and anecdotal evidence. In order to discover
such reasoning principles, we need to find out first what the natural numbers really are, a question
with a rich and very interesting history.

Although natural numbers arise from counting, the notion of number is not inherently linked
to any particular collection of entities being counted. Scholars in the Pythagorean tradition were
among the first to articulate this insight. Nicomachus emphasized in his Introduction to Arithmetic
the concepts of monad and dyad for the totality of all things that come in one or two units [Nic1926].
Nicomachus ascribed divine properties to the monad, or unity: ‘It generates itself without beginning,
without end, and appears to be the cause of enduring, as God in the realm of physical actualities is
in such manner perceived of as a preserving and guarding agent of nature’’. Nicomachus drew
strong parallels between the monad and the concept of sameness, and dually between the dyad and
the concept of otherness. He also emphasized that numbers were composed of monads. In other
words, the monad is the source of all numbers. Although mathematicians do not ascribe divine
properties to numbers anymore, we see here the emergence of some important ideas. The first is that
all numbers are generated from the monad, that is, unity. The second idea is to connect unity with
sameness. The idea that all things equal to a given object form a unit, or a singleton, anticipates
a fundamental principle of equality. However, we shall forego the interesting digressions that we
could make about equality and focus our attention on the concept of number.

With Euclid, we see a shift away from the divine conception of the monad. For Euclid, a unit
is the conceptual principle by which an individual object is identified as one, and a number is a
multitude composed of such units in a discrete fashion [Euc2015]. In other words, the concept of
unit captures the notion of oneness, but this is distinct of the number 1 itself. Both Nicomachus’s
and Euclid’s views on the concept of number were highly influential throughout late antiquity and
the Middle Ages, particularly through Boethius’s Latin rendition of Nicomachus’s Introduction to
Arithmetic [KP2012] and Adelard of Bath’s translation of Euclid’s Elements [Clal953].

While Pierre de Fermat is regarded the founder of modern number theory, he did not write
extensively on the philosophy of mathematics. Nevertheless, certain themes in his correspondence
and work show a clear orientation. For him, mathematics is about truths intrinsic to numbers. Num-
bers were the object of exact reasoning. He emphasized that induction, by which mathematicians
up to the early 19th century understood experimental verification, was insufficient to establish
universal truths of numbers. Nowadays, this historical use of the word induction is sometimes called
empirical induction. Among Fermat’s lasting contributions was his method of infinite descent, a
method of proof by contradiction in which one shows that any supposed solution would lead to an
ever-decreasing sequence of natural numbers, which is impossible.

With Euler, we witness a significant conceptual expansion. In his Elements of Algebra, Euler
extended the notion of number beyond the natural and rational to encompass negative numbers,
irrationals, complex numbers, and even infinite series. He was among the first to conjecture that
constants like e and 7 are transcendental; that is, not the roots of any algebraic equation with rational
coefficients. For Euler, numbers were entities governed by formal laws, irrespective of whether they
corresponded to geometric magnitudes. Euler’s broadening of the concept of numbers, and his use
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of analytic methods would eventually spark debates about the foundations of mathematics and the
logical principles underlying mathematical truth.

In the 19th century, the nature of mathematics itself began to change. The emergence of non-
Euclidean geometry was a challenge to the status of Euclid’s Elements as the de facto foundation of
mathematics, and Weierstrass’s discovery of continuous, nowhere differentiable functions meant
that one could not simply rely on intuition in the study of calculus and analytics. Furthermore, with
Galois’s use of symmetries in order to show that quintic equations had no solutions expressible in
terms of radicals, abstract algebra became a prominent subject of mathematics with algebraic objects
that have little in common with numbers except for a few formal laws. These discoveries underscored
the need for a more solid foundation of mathematics, ultimately resulting in the emergence of Frege’s
logicism and set theory.

Nevertheless, the question of formally defining the set of natural numbers was left mostly
unexplored until the second half of the 19th century. Even as late as 1886, Kronecker is quoted as
proclaiming that ‘‘God created the integers, all else is human work’” [Web1893], not helping the
cause of finding a definition of the natural numbers. In Was sind und sollen die Zahlen? (translated
to English as What are numbers and what should they be?), Dedekind was the first to formally
define the set of natural numbers. His idea was that the number zero and the successor function
together should be sufficient to describe all the natural numbers. He formalized this idea in 1888 by
specifying that the set of natural numbers is a simply infinite set, meaning that there is a one-to-one
function § : N — N such that every element of N can be reached by iteratively applying S to an
element 0, which is not itself a value of § [Ded1888]. Dedekind showed furthermore that all simply
infinite sets are similar to each other; in modern termimology, he showed that all simply infinite sets
are isomorphic. Thus, Dedekind’s definition was structural in nature, in the sense that it captured
the structure a set must possess in order for it to be considered a set of natural numbers.

Not much later, Giuseppe Peano arrives at a very similar definition of the set of natural numbers.
In Arithmetices principia nova methodo exposita he established the set of natural numbers as a set
satisfying a small number of axioms, the celebrated Peano axioms [Peal889]:

(i) For any two natural numbers x and y we have
(x=y) & (S(x) =SK).

(ii) There is no natural number x such that S(x) = 0.

(iii) For any set A, if 0 € A and if for any natural number x we have (x € A) = (S(x) € A), then
every natural number is in A.

The first axiom establishes that the successor function S is one-to-one. This means that every natural
number is the successor of at most one natural number. The number O itself is, in the setup of
Dedekind and Peano, not a successor by the second axiom. The third axiom encodes mathematical
induction. The notation x € A means that x is an element of A, or in other words that A contains
the element x. Thus, Peano’s third axiom asserts that if A is a set containing 0 and containing the
successor of every element it contains, then it contains all the natural numbers. While the similarity
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between Dedekind’s and Peano’s approach is clear, we note Dedekind’s approach was structural,
set-theoretic, and intended for a philosophical audience, Peano’s approach was formal, logical, and
symbolic.

A common alternative way of formulating mathematical induction is as follows. Given any
property P(n) expressing a condition of an arbitrary natural number #, in order to prove that P(n)
is true for all n it suffices to prove that:

(i) The property P(0) is true.
(ii) For all n, if the property P(n) holds then the property P(n + 1) holds.

Mathematical induction formalizes the idea that every natural number is either O or it is the successor
of a previous natural number. Proving a property for all natural numbers therefore breaks down
in two cases: The base case in which we prove that P(0) is true, and the inductive step where we
prove that P(n + 1) is true provided that P(n) is true.

While proofs by mathematical induction go back to antiquity, the first to formulate the mathemat-
ical induction abstractly as a method of proof was Blaise Pascal in his Traité du triangle arithmétique
[Pas1665]. In this work, he studied the triangle of numbers now named after him. In a passage on
the ratios of two horizontally adjacent binomial coefficients he wrote:

Quoy que cette proposition ait une infinité de cas, j’en donneray une démonstration
bien courte, en supposant deux lemmes.

Le 1. qui est évident de soy-mesme, que cette proportion se rencontre dans la seconde
base; car il est bien visible que ¢ est a o comme I a 1.

Le 2. que si cette proportion se trouve dans une base quelconque, elle se trouvera
nécessairement dans la base suivante.

Notice, however, that Pascal did not yet use the term induction for this method of proof. As we
mentioned earlier, mathematicians of his time understood the word induction to refer to the empirical
method of extrapolating patterns from finite data. Augustus De Morgan was the first to coin the
term mathematical induction in 1838, albeit somewhat incidentally [Caj1918]. In his article on
this topic in the Penny Cyclopedia he coined the term successive induction, but he used the phrase
mathematical induction in a concluding remark [De 1838]. Through the efforts of Dedekind and
Peano, the induction principle has evolved from a method of proof to a defining principle for the set
of natural numbers.

By the turn of the 20th century, set theory, as pioneered by Georg Cantor and developed further
by Richard Dedekind and others, was increasingly seen as a promising foundation for mathematics.
However, the emergence of paradoxes around 1900 prompted efforts to axiomatize set theory.
Beginning with Zermelo’s axioms in 1908 and refined into the Zermelo—Fraenkel system in the
1920s, set theory gradually became the de facto foundational framework for modern mathematics.
This raises the question whether the natural numbers can be defined within Zermelo—Fraenkel’s set
theory. Von Neumann gave an elegant set-theoretic definition of the natural numbers: The number
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0 was defined as the empty set @, the number 1 was defined as the set {0} containing the empty set,
the number 2 was defined as the set {0, 1}, and so on:

0:=g, 1:= {2}, 2:={2,{2}} 3:={2,{2},{2,{2}}},

However, Von Neumann’s definition is not the only possible definition. One can also define

0:=02, I={e},  2:={{e}}, 3:={{{e}}},

These two definitions are clearly distinct, since 0 € 2 is true in Von Neumann’s definition but
false in the latter definition. This raises the question, if Zermelo—Fraenkel set theory is to be the
foundation of mathematics, then what is the set of natural numbers? Paul Benacerraf argued in
his famous essay What numbers could not be? that the essence of the set of natural numbers is its
structure, much like Dedekind had already argued almost a century before him [Ben1965].

While mathematicians often prefer to work with sets, computer scientists might prefer to work
with types. The distinction is merely that of the logical framework being used: Most mathematicians
rely on the Zermelo—Fraenkel set theory, while computer scientist rely on programming languages
that often have a type theory in its foundation. Theorem proving in computer programs called proof
assistants is rapidly becoming a more essential mathematical activity for students and researchers
alike. However, many of the most popular proof assistants are based on type theory, in which
collections of mathematical objects are called types.

Modern mathematics is increasingly formalized in computer programs called proof assistants.
There are many libraries of formalized mathematics in active current development, containing vast
amounts of mathematics from a wide variety of mathematical subjects. However, the foundation of
most such systems is not set-theoretic. Instead, many proof assistants use dependent type theory as
their foundational language, which was developed in the 1970s and 80s by Per Martin-L6f. Both
sets and types are collections of abstract objects often referred to as elements, but the formalisms by
which they are studied are different in character, thus justifying the different names sets and types.
The way the natural numbers are introduced in type theory is also slightly different. Whereas the
induction principles of Dedekind and Peano establish the inclusion of the set of natural numbers into
other sets, the natural numbers in type theory come equipped with a structural induction principle
that allows one to define functions out of the natural numbers. Similar to the previous definitions, the
type of natural numbers comes equipped with 0 and a successor function. The structural induction
principle states that in order to define a function f(n) taking as input a natural number n and as
output an element of a set A,,, possibly depending on 7, one has to specify:

(i) an element ag € Ao, and
(i1) a function h, : A, — A,41 for every natural number n.

The function f obtained in this manner satisfies the equations

J(0) = ao,
fn+1) = hy(f(n)).
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From a type-theoretic perspective, there is no need to assume that the successor function is a
one-to-one function or that O is not a successor. Indeed, these two axioms can be derived from
structural induction.

We have thus seen that the concept of number has evolved over thousands of years of mathe-
matical effort and underwent refinements up to the second half of the 20th century. We will follow
the type-theoretic approach, and take a structural approach to the subject. Thus, the set of natural
numbers contains an element 0 and a successor function, and together they generate all the natural
numbers in the sense that functions out of the natural numbers can be uniquely specified with
recursive definitions. Similarly, we will give in this course structural accounts of the set Z of all
integers, and the set Q of rational numbers. In the remainder of this chapter, we will explore from a
practical perspective what induction and recursion mean, and how to use them.

1.2 Recursion and Induction

When we say that the natural numbers are the numbers 0, 1, 2, . . ., we really mean that the natural
numbers are generated from 0 and the successor function n — n + 1, which we also denote by S.
As we saw in our exposition on the history of the concept of number, the definition of the natural
numbers evolves around precisely expressing the idea that all numbers are generated from 0 and
a successor function. Several ways of expressing this idea have been proposed through history:
Dedekind’s simply infinite sets, Peano’s axioms, and the structural induction principle of type
theory. We will follow the type-theoretic approach.

Definition 1.2.1. The set N of natural numbers is a set equipped with an element O and a successor
function S : N — N, satisfying the following principle of structural induction: For any family of
sets A, indexed by the natural numbers equipped with

(1) an element ag € Ay,
(i1) for each n a function A, : A, — A,41,

there is a function f taking a natural number n as input and returning a value f(n) in the set A,
satisfying the equations

f(0) = ao,
f(n+1) = hy(f(n)).

Thus, when defining a function by structural induction there are two subtasks: First, we have to
specify the value of f(0) by specifying an element of the set Ag, and second, we have to specify
how each potential value of f at n can be used to obtain the value of f atn + 1. The last task is
performed by defining a function 4, from A, to A,., so that if f(n) is determined, then we can
determine f(n + 1) by applying A, to f(n).
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The two equations that the function f in the structural induction principle satisfies are called the
computation rules. By these computation rules we can present definitions by structural induction in
the following shorthand form:

f(0) := ao,
f(n+1) = h,(f(n)).

An important special case of structural induction, which will serve as our first example and by
which we will define many further examples of recursive functions, is to iterate any function f on
any set X. Here we pick A, to be the set X (so it is not dependent on n), and we pick A, : X — X
to be the function f (again not dependent on n). In the following definition we give the precise
definition of the nth iteration of f.

Definition 1.2.2. We define the nth iteration " of f by
) =x,
) = ).

In other words, the Oth iteration of 4 is the identity function, which leaves all elements untouched,
and the (n + 1)st iteration of 4 is obtained by applying f once more to the values of the nth iteration
of h.

Notice that we made a choice in the definition of the (n + 1)st iteration of f. We could have
defined it alternatively by f"*!(x) := f*(f(x)). In order to prove that the identity

) = f)
indeed holds we will need mathematical induction, which is a special case of structural induction.

Definition 1.2.3. The principle of mathematical induction asserts that for any predicate P(n) (that
is, for any property of numbers depending on n), if

(i) the proposition P(0) holds,
(ii) for any n, if the proposition P(n) holds then the proposition P(n + 1) holds,
then P(n) is true for all n.
Proofs by induction can thus be broken down into the following steps:

(i) First identify the property P(n) that you want to prove by induction. The goal of an induction
proof is always to prove that P(n) is true for all n.

(i1) Next, prove the base case. In other words, show that P(0) is a true proposition.While this
step is often trivial, it is a necessary and essential part of an induction proof.
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(ii1) Finally, for the inductive step, write down the exact induction hypothesis, namely the property
P(n), and the exact goal of the inductive step, namely the property P(n + 1). Then use the
induction hypothesis to prove that P(n + 1) then also holds.

After these steps the proof that P(n) holds is complete. Using induction we can prove, for example,
that the identity f"*!(x) = f"(f(x)) holds for every n.

Proposition 1.2.4. Consider a function f : X — X on a set X, and let n be a natural number. Then
we have

S = f1(f(x)
forall x € X.

Proof. The proof is by induction on n. In the base case, we must show that

£He) = ).
By our definition of f”(x), we have that f'(x) = £(f°(x)), and we have f°(x) = x, so that

1) = (0 = f(x) = £O(f ().

This proves the base case. In the inductive step, we assume as our inductive hypothesis that

) = 1(f(x)

for every x € X. Our goal is then to show that

) = ).
Recall from the definition of iteration that f"*?(y) = f(f"*'(y)) for all y € X. This, together with

the induction hypothesis, allows us to complete the proof:

2@ = fN@) = L) = ) O

1.3 Addition of Natural Numbers

Iterating functions is a basic operation that we can use to define many further operations. For
example, addition is defined by iteratively adding 1 to a number m. In other words, addition is
defined by iterating the successor function. The nth iteration of the successor function is denoted
by S".

Definition 1.3.1. The addition operation + : N — N — N is a binary operation defined by iterating
the successor function S:
m+n:=8"(m).

In other words, m + n is the nth successor of m.
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For example 2 + 3 is defined as S(S(S(2))), which is equal to S(5(3)), which is equal to S(4),
which is equal to 5.
The operation m, n — m + n satisfies the equalities

m+0=m,
m+(n+1)=(m+n)+1
by definition. However, these are the only equalities given to us via the computation rules of the
strong induction principles. Other equalities, such as the equalities
O+n=n,
(m+1)+n=(m+n)+1

are still true, but require a short proof.
Proposition 1.3.2. For any two natural numbers m and n we have

O+n=n,
m+1)+n=m+n)+1.
Proof. The proof of both equalities is by induction on n. For the base case of the first equality, note
that the equality O + 0 = 0 holds by definition. For the inductive step, assume that O + n = n. Then

we have
O0+(n+1)=0+n)+1=n+1.

For the base case of the second equality, note that the equalities (m+1)+0=m+1=(m+0) + 1
hold by definition. For the inductive step, assume that (m + 1) + n = (m + n) + 1. Then we have
m+H)+(n+)=((m+)+n)+1l=((m+n)+1)+1=m+(n+1))+1. O

Proposition 1.3.3. For any function f : X — X, we have

) = ().

Proof. The proof is by induction on n. In the base case, we have m +0 = m and f°(x) = x. Together,
these identities give:

@) = 1) = ().
For the inductive step, assume that for every element x € X we have f"*"(x) = f"(f"(x)). Our
goal is to show that

fm+(n+1)(x) — fm (fn+1 (X))
Here, we use that the equalities m + (n + 1) = (m + n) + 1 and f"*!'(x) = f(f"(x)) hold by
definition, and that the equality f”(f(x)) = f(f™(x)) holds by Proposition 1.2.4. Together, these
identities give:
Frre @) = frH ) = F( ) = FU )
= fMFU)) = U D). O
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Corollary 1.3.4. Addition of natural numbers is associative: For any three natural numbers I, m,
and n we have
(l+m)+n=1+(m+n).

Proof. By definition, we have (I + m) + n = §"(§™(l)) and [ + (m + n) = §”*"(l). Combining
these identities with Proposition 1.3.3, we obtain

(I+m)+n=S"(S"() = S""() =+ (m +n). O

Proposition 1.3.5. Addition of natural numbers is commutative.: For any two natural numbers m
and n, we have
m+n=n+m.

Proof. The proof is by induction on n. In the base case, we use Proposition 1.3.2
m+0=m=0+m.
For the inductive step, assume that m + n = n + m. Then we use Proposition 1.3.2 again to obtain:

m+(n+1)=m+n)+1
=(m+m)+1
=(n+1)+m. ad

Some further useful identifications of addition, which follow from the associativity and commu-
tativity laws, are:

(I+m)+n=(+n)+m,
[+(m+n)=m+ ([ +n),
(k+D)+(m+n)=(k+m)+ (l+n).

The last identification is called the interchange law for addition. The first one follows from the
second, and the second and third are proven by a short calculation:

[+(m+n)=((+m)+n (k+Dh)+(m+n)=k+(l+(m+n))
=(m+I)+n =k+(m+(l+n))
=m+ (l +n), =(k+m)+ ([ +n).

1.4 Arithmetic of Natural Numbers

Definition 1.4.1. The multiplication function m,n +— mn on the natural numbers is defined
recursively by

m0 =0,

m(n+1) :=mn+m.
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Proposition 1.4.2. Multiplication of natural numbers satisfies the following laws:

On =0, m0 =0,

(m+ 1)n =mn + n, m(n+1)=mn+m,
Im=m ml, = m,
[(m+n)=Im+In, (I +m)n =In+ mn,
(Im)n = l(mn), mn = nm.

Proof. We prove that On = 0 by induction on n. In the base case, we have the equality 00 = 0. For
the inductive step, assume that On = 0. Then O(n + 1) = On + 0 = On = 0, completing the proof of
the first identity. The identity m0 = 0 holds by definition.

The proof that (m + 1)n = mn + n is again by induction on n. In the base case, we have the
equalities (m + 1)0 = 0 = m0 = mO0 + 0. For the inductive step, assume that (m + 1)n = mn + n.
Then we have

(m+1)(n+1) = (m+)n+(m+1) = (mn+n)+(m+1) = (mn+m)+(n+1) =mn+1)+(n+1).

The identity m(n + 1) = mn + m holds by definition.
Next, we prove first that mn = nm, by induction on n. In the base case, we have the equalities
m(0 = 0 = Om. For the inductive step, assume that mn = nm. Then we have that

mn+l)=mn+m=nm+m=n+1)m.

Now we prove that [(m +n) = Im + [n. We prove it by induction on n. In the base case, we have
that [(m + 0) = Im = Im + 0 = Im + [0. For the inductive step, assume that [(m + n) = Im + In.
Then we have that

Im+(m+1)=l((m+n)+ ) =Ilm+n)+l=Um+In)+l=Im+(In+])=Im+I1(n+1).

The identification (I + m)n = [n + mn follows from the previous identification, using the fact that
mn = nm.

Finally, the proof that (Im)n = [(mn) is by induction on n. In the base case, we have the
equalities (Im)0 = 0 = [0 = [(m0). For the inductive step, assume that (/m)n = [(mn). Then we
have that

(Im)(n+1)=Umn+Im =I1(mn) +Ilm=Il(mn+m) =Il(m(n+1)).

1.5 Finite Sums and Products

Definition 1.5.1. The finite summation operation }, is defined by specifying a finite subset / C N
and a family of natural numbers a; where i ranges over the elements of /. We will write

Zai

iel
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for the sum over all the natural numbers a;, with i ranging over /. This sum is defined by recursion
over the number of elements in /. If 7 has no elements (that is, / is empty), then we define

Zai :=0.

iel

If I has at least one element iy, then we write J := I \ {ip}, allowing us to define

Zai = ai0+Zaj.

iel ieJ
Theorem 1.5.2. For any natural number n we have

nn+1)

O+---+n=
T

Proof. LetS, :=0+---+n,and let P(n) be the property that S, = @ We will prove that P(n)
is true for all n by induction. In the base case, we have to show that P(0) holds, that is, that the
identity

0-1

0=-—
2

is true. This is indeed true, because the numerator in the fraction on the right-hand side is 0.
For the induction step, let n be a natural number and assume as our inductive hypothesis that
P(n) is true. Our goal is now to prove P(n + 1), that is, that the identity

(n+1)(n+2)

Sn+1 = >

Note that S,,+1 = S, + (n + 1). By the inductive hypothesis we have that S, = "("2+1) , which we may

now use to rewrite

+1
Sn+(n+1):n(n—)+(n+1).
Observe that (n + 1) = 2(”2“). Therefore we can make the following computation:
nn+1) nn+1) 2n+1) nrn+1)+2(n+1) (wr+2)(n+1)
7 1 — = = .
R A S 2 2
Since (n+2)(n+ 1) = (n+ 1)(n + 2) it follows that S,,+; = %2(””) as desired. O

We illustrate induction with another example, the formula for the geometric series.

Theorem 1.5.3. For any real number x not equal to 1, the identity

1

S

x" -1
Xk =

-1
k=0 X
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Proof. The proof is by induction on n. In the case n = 0 the sum

-1

2.+

k=0

is an empty sum, because it sums over all elements 0 < k < —1 of which there are none. In empty
sums, nothing is being added, so they are always 0. On the right hand side, we also see that

XL-1 1-1 0
x—-1 x-1 7
and hence the base case holds.
For the inductive step, assume that Y/~ [ 0 xk =
n n+l _ 1
Zxk == 1
k=0 r-

Note that Z'é:o x* = (XiZo ! x¥) + x". By applying the induction hypothesis we therefore find that

n

n_1
Zxkzx +x".
x—1

k=0
Note that x" (xx Dx”  Therefore we can bring the two summands under one fraction as follows:
x”—1+ " x"—1+(x—1)x” Xt— 1+ oy xntl g
X = = =
x—1 x—1 x—1 x—1 x—1
This completes the inductive step, and therefore the proof. O

1.6 Hemachandra’s Counting Problem

In the 12th century, the Indian scholars Gopala and Hemachandra studied the number of rhythmic
patterns formed by combining short and long syllables in Sanskrit prosody. Hemachandra, around

I I T T T
(T T T
A I I I O I

Figure 1.1: Three example tilings of a 1-by-19 grid using monominoes (1-by-1 tiles) and dominoes (1-by-2
tiles).
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Figure 1.2: A list of all the possible tilings of a 1-by-5 grid using monominoes and dominoes.

the year 1150, found a systematic way of counting the number of rhythmic patterns that can occur
for any number of beats.

In order to rediscover Hemachandra’s method, it might be helpful to think of the patterns of
short and long syllables in terms of tilings one can make on a 1-by-n grid using monominoes (1-by-1
tiles) and dominoes (1-by-2 tiles). We have displayed some arbitrary examples of such tilings in
Figure 1.1. The question is thus: How many such patterns are there?

In order to count them, let H,, be the number of such tilings. One way of finding the number
H,,, which works when a specific n is given, is to simply list all the tilings of a 1-by-n grid. Doing
so for small values of n is a great way to get a feeling for the problem. In Figure 1.2 we have listed
all the possible tilings of the 1-by-5 grid.

For the first few numbers it is easy to determine the value of H,. For example, the number H| is
just 1, since the only way of tiling a 1-by-1 grid using monominoes and dominoes is to use a single
monomino. Likewise, the number H> is 2, since we can either use two monominoes or one domino
as a tiling of a 1-by-2 grid. However, listing all such tilings gets elaborate for larger n quite quickly,
and furthermore doing so by hand is quite error-prone. The problem is therefore to find a clever
way of counting all possible patterns for all n.

Notice that the last tile is either a monomino or a domino, so there are two cases to consider.
The number of tilings ending in a monomino is exactly the number H,_;, and the number of tilings
ending in a domino is exactly the number H,_;. This can be seen in Figure 1.2, where we listed all
the tilings of the 1-by-5 grid. There are five tilings ending in a monomino, corresponding to each
of the five different tilings of the 1-by-4 grid. Similarly, there are three tilings ending in a domino,
corresponding to the three different tilings of the 1-by-3 grid. Thus, the total number of tilings of a
1-by-n grid is the sum of these two numbers:

H, = Hy_1 + Hy>.
This recursive rule is very famous: It is the rule that generates the Fibonacci numbers.
Definition 1.6.1. The sequence F;, of Fibonacci numbers is defined by
Fy:=0, Fp:=1, and Fopop=F,.1+F,.
Since the numbers H,, start with H; = 1 and H, = 2, we find that

Hn = I'p+l-
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Hemachandra applied this recurrence to list the initial values of the sequence H,: 1, 2, 3, 5, 8§,
13, 21. His results appear in his treatise on metrics, the Chandonusasana [Hem1961], composed
several decades before Fibonacci’s Liber Abaci (1202). Nevertheless, in most of the world this
sequence of numbers is called the Fibonacci numbers, even though it might be more appropriate to
call them the Hemachandra—Fibonacci numbers.

The tiling interpretation of the Fibonacci numbers also appears in [Bri+1996]. The delightful
book Proofs That Really Count: The Art of Combinatorial Proof by Arthur Benjamin and Jennifer
Quinn uses the tiling interpretation of the Fibonacci numbers to derive many Fibonacci identi-

ties combinatorially, and it contains many further examples of beautiful counting constructions
[BQ2003].
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Exercises

Starter Exercises

1.1 Prove that the sum of the first n odd numbers is a perfect square. That is, prove that

n—1
Z 2%k + 1 = n.
k=0

Note: This summation formula is the starting point from which Fibonacci derived much of
his work in his book Liber Quadratorum (The Book of Squares) [FS1987].
1.2 (a) Prove that

n
D Fi=Fua—1.
k=0

(b) Prove that

n-1
For1 = Fop.
k=0
(c) Prove that
n
Zsz = Fop1 — 1.
k=0

1.3 Just as in Hemachandra’s counting problem, suppose we have a metre of n beats composed
of long (2 beats) and short syllables (1 beat). This time, the short syllables are distinguished
between strong or soft beats. Write down the recursive formula for the number of rhythmic
patterns of n beats, and use it to determine the correct values for 1 < n < 10.

1.4 Gopa the grasshopper can jump either 5 or 8 steps. Find a recursive expression for the number
of ways in which he can reach a spot n steps away, without jumping backwards, and determine
in how many ways can he reach his favorite spot, 29 steps away.

Routine-Building Exercises

1.5 Prove the formula for the difference of nth powers
n—1
X" = yn — (x _ y) Zxkyn—l—k‘
k=0

Note that this formula generalizes the formula for the difference of squares

-yr=(x-y)(x+y)

as well as the formula for the geometric series

n—1
x"=1= (x—l)Zxk.
k=0
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1.6 Write T, for the nth triangular number.
(a) For 0 < m < n, show that

(n—-m)(n+m+1)

I,-T, = )

(b) For any two natural numbers m and n, show that
Towin =T, + T, + mn.

(¢) Show that
1>, = 4T, — n.
(d) Show that
8T, +1=(2n+1)>%

1.7 Write T, for the nth triangular number.

(a) The numbers

Sn = Z)Tk

are called the tetrahedral numbers. Give a geometric interpretation of these numbers
justifying their name.

(b) Prove that

nn+1)(n+2)

Sp =
6

(c) Prove that
mn(m +n+ 2)

2
1.8 (a) Prove the formula for the square pyramidal numbers

Zn:kz _nn+1)(2n+1)
k=0 6
Can you explain why the numbers of the form };_, k?
numbers?
(b) Prove that

are called square pyramidal

n—1
Z(zk +1)? = M
k=0 3

1.9 (a) Prove Nicomachus’s Theorem
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(b) Prove that
n—1
Z(Zk +1)% = 2202 - 1).
k=0

1.10 Prove that
nn+1)(n+2)(n+3)
1 .

Z k(k+1)(k+2) =
k=0
1.11 Prove that

n
Z F2=F,F,,..
k=0

Challenge Exercises

1.12  (a) Prove Cassini’s identity:
Froy = FaFp = (=1)",

(b) Prove the following generalization of Cassini’s identity:

F2,, = FyFuor = (-1)"F}.

n+k

1.13 Consider two nonzero natural numbers a and b satisfying a(a + b) < b>. Prove that the strict

inequality
b n
F, < (—)
a

holds for all n. Use Cassini’s identity to give some examples of natural numbers a and b that
satisfy this inequality.
1.14 Show that
Fi +F3 3+ 1 =3F1F;.

1.15 Define
an = FFpy — (-1)",
by:=F;+F.,,,
Cn = 3F,F1 + (-1)".
Show that (a2, b2, ¢2) is an arithmetic progression of squares; that is, show that
b%—a% :ci—b%.
1.16 A 3-term arithmetic progression (a, b, ¢) is a triple of numbers ¢ < b < ¢ with common

increment, so that b — a = ¢ — b. Show that every 3-term arithmetic progression of distinct
positive Fibonacci numbers is of the form

(Fna Fn+2’ Fn+3)-

Conclude that there are no 4-term arithmetic progressions of distinct positive Fibonacci
numbers.



Chapter 2

Counting

2.1 Hume’s Principle

Combinatorics, or discrete mathematics, is the mathematics of finite structures. A central theme in
combinatorics is counting, establishing a closed form for the number of objects of a certain kind.
Such counting methods can sometimes be used to obtain results in number theory. For instance, we
will use a counting argument to show that the product

nn=1)---(n—k+1)

of any k consecutive natural numbers is always divisible by k!.

We will begin by investigating more conceptually what mathematicians mean by counting,
and work towards Hume’s principle. David Hume stated this principle in Part IIT of Book I of his
Treatise of Human Nature, a philosphical work in which he set out to found a general ‘‘science of
man’’ by applying empirical methods to understanding, the passions, and morals [Hum1978]. In
discussing the idea of number, he observes that equality of numbers can be determined whenever
there is a one-to-one correspondence between their constituents:

We are possest of a precise standard, by which we can judge of the equality and
proportion of numbers, and according as they correspond or not to that standard, we
determine their relations, without any possibility of error. When two numbers are so
combin’d, as that the one has always an unite answering to every unite of the other, we
pronounce them equal; and ’tis for want of such a standard of equality in extension,
that geometry can scarce be esteem’d a perfect and infallible science.

We note here that Hume relies on the Euclidean conception of number, where a number is a multitude
of units: the number 7 is the collection of n units. By contrast, in modern mathematics we treat
the natural numbers as an inductively generated set. To recover Hume’s insight in our setting, we
introduce the notion of a standard n-element set, which is to be a fixed set with exactly n elements
playing the role of Euclid’s collection of » units.

21
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N L,
S=si)

Figure 2.1: A bijection between two 3-element sets.

Definition 2.1.1. The standard finite set [n] with n elements is defined by
[7] :={0,....,n—1}={x e N | x <n}.

The standard O-element set [0] is the empty set, since there are no natural numbers strictly
smaller than 0. The standard 1-element set is the set {0}, since O is the only element strictly smaller
than 1. The standard 2-element set is the set {0, 1}, since the only two elements strictly smaller
than 2 are 0 and 1, and so forth.

Suppose now that we are given an arbitrary set A, and we wish to count its elements. What does
it mean when we say that the set A has n elements? It means that we can, at least in principle, label
each element of A with a number 0 < i < n in such a way that every element of A is labeled by
exactly one number 0 <7 < n. By making sure that every element of A is labeled at least once we
make sure that every element of A is accounted for, and by making sure that every element of A is
labeled at most once we make sure to not overshoot the count.

Thus, in order to show that the set A has n elements, we have to create what is called a bijective
correspondence between the elements of the standard finite set [n] and the set A.

Definition 2.1.2. A function f : X — Y is said to be a bijection if for every y € Y there is exactly
one element x € X such that f(x) = y. The set of bijections from X to Y is denoted by

X=Y.
Furthermore, we say that X is an n-element set if there exists a bijection [n] = X.

In Figure 2.4 we displayed an example of a bijection between two 3-element sets. Note that
such a bijection would not exist between A and B if the number of elements in B was different from
three. If B had fewer than 3 elements, as shown in Figure 2.2, then any function f : A — B would
necessarily repeat a value, while if B had more than 3 elements, as shown in Figure 2.3, then no
function f : A — B could have all the elements of B in its range.

This is precisely the reason why we are interested in bijections: If there is a bijection between A
and B, then they must have the same number of elements. The principle that any two finite sets have
the same number of elements if and only if there is a bijection between them is Hume’s Principle.

In order to prove Hume’s principle more formally, we need two lemmas. The first is an abstract
lemma that asserts that two bijections f : A = B and g : B = C can be composed into a bijection
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Figure 2.2: This function is not a bijection Figure 2.3: This function is not a bijection
since b is the value of the distinct elements since by is not the value of any element in
a; and as. A.

go f:A=C. The second is a self-evident looking lemma that establishes that if A is an (n + 1)-
element set and a € A, then the set A \ {a} consisting of all elements of A except a is an n-element
set. Indeed, such a lemma also requires proof.

Before we state the composability of bijections, a few comments about how to prove that a
function is a bijection and how to use the assumption that a function is a bijection are in order.

Proving that f : X — Y is a bijection. The condition that a function f : X — Y is a bijection
states that for every element y € Y there is a unique element x € X such that f(x) = y. Such unique
existence properties have two parts: first we have to show that there indeed exists at least one such x,
and second we have to show that it is unique. For the second part, we assume that if both x satisfies
f(x) =y and x’ satisfies f(x’) = y, then we must have x = x’.

Using the condition that f : X — Y is a bijection. If we assume that f : X — Y is a bijection,
then we have for every y € Y access to an element x € X such that f(x) = y. Furthermore, for
every x’ € X such that f(x") = y we know that the equality x = x” must hold, which we may use if
it helps us in our proof.

Lemma 2.1.3. Consider two bijections f : A = Band g : B = C. Then the function g o f defined
by a — g(f(a)) is also a bijection.

Proof. We have to show that for every element z € C there is exactly one element x € A such that

§(f(x)) = z.
LON— —©
v @ e

©)

Figure 2.4: Composition of bijections between 3-element sets.
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Since g is assumed to be a bijection, there is exactly one element y € B such that g(y) = z.
Furthermore, since f is assumed to be a bijection there is exactly one element x € A such that
f(x) = y. For such x, we have

g(f(x) =g =z

Thus we have shown that there is at least one such element x.

To see that there is at most one, let x” € A be such that g(f(x”)) = z. Since both g(f(x)) =z
and g(f(x")) = z it follows from the assumption that g is a bijection that f(x) = f(x"). However,
this shows that x and x” have the same value, which implies that x = x” by the assumption that f is
a bijection. This completes the proof that the element x € A is the only element of A mapping to
Z. O

Lemma 2.1.4. Consider an (n + 1)-element set A equipped with an element a. Then the set
A\{a} ={xe€A|x+#a}
is an n-element set.

Proof. Suppose f : [n+ 1] — A is a bijection. Then there is a unique element x < n + 1 such
that f(x) = a. We will first construct a bijection /4 : [n + 1] — [n + 1] such that #(n) = x. Once
we have such a bijection, it follows that f o 4 : [n + 1] — A is a bijection such that f(h(n)) = a,
which will allow us to make progress.

The bijection 4 is defined by swapping the elements »n and x:

x ify=n,
h(y) :=4n ify=x,
y otherwise.

The fact that 4 is a bijection follows by case analysis on y: If y = n then the only element mapping
to y is x; if y = x then the only element mapping to y is n, and otherwise the only element mapping
to y is y itself.

Now, since we have a bijection g := f o h: [n+ 1] — [n+ 1] such that g(n) = a, it follows
that the restriction of g to the set [n] is a bijection from [n] to A \ {a}. O

Theorem 2.1.5 (Hume’s Principle). Consider an m-element set A and an n-element set B. Then
there exists a bijection between A and B if and only if m = n.

Proof. The claim has two directions. In the forward direction, we have to show that if there is a
bijection A = B, then m = n. In the reverse direction we have to show that if m = n, then there is a
bijection A = B. The reverse direction is direct, so we do it first.

Suppose that m = n. This implies that [m] = [r], which in particular implies that there is a
bijection [m] = [n]. Since A is an m-element set, there exists a bijection [m] = A, and since B is
an n-element set, there is a bijection [n] = B. Chaining these bijections gives

A =[m] =[n] =B.
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In other words, the composite of all these bijections results in a bijection A = B. This completes
the reverse direction of the claim.

The proof of the forward direction is by induction on m. For the base case, if m = 0 it follows
that A is empty. This implies that # is not nonzero. Indeed, if n were nonzero, then B would have
an element, which would correspond to a unique element in A, which does not exist. Thus we
conclude that » = 0, and hence that m = n.

Now assume that for any m-element set A with a bijection into an n-element set B, we have
m = n. Our goal is to show that if A is an (m + 1)-element set with a bijection into an n-element set
B, then m + 1 = n. Note that n > 0, since A has at least one element. Thus, we can write n = n’ + 1.
Furthermore, given an element a € A, we obtain f(a) € B. Then the bijection f restricts to a
bijection

(A\{a}) = (B\{f(a)})
between an m-element set and an n’-element set. By the inductive hypothesis, this implies that
m = n’ and thus we conclude thatm + 1 =n’ + 1 = n. ]

2.2 Equivalent Ways of Defining Bijections

We have defined bijections to be functions f : X — Y such that for every y € Y there exists exactly
one element x € X such that f(x) = y. The unique existence of such an element x can be broken
down in two parts: existence and uniqueness. This suggests that also the definition of bijectivity
can be broken down in two parts. This is indeed the case, and both concepts turn out to be useful.

Definition 2.2.1. A function f : X — Y is said to be surjective if for every y € Y there exists an
element x € X such that f(x) = y.

A function f : X — Y is said to be injective if for every y € Y there is at most one element
x € X such that f(x) = y.

Thus, a function f : X — Y is surjective if every element of Y is a value of f. The function
shown in Figure 2.2 is an example of a surjective function.

Likewise, a function f : X — Y is injective if the function f does not repeat values. Another
way of stating the condition that f is injective is by the condition

(f(x)=f() = (x=Yy),

which states that if two elements x and y have the same value under f, then they must be the same.
The function shown in Figure 2.3 is an example of an injective function.

An immediate corollary of these definitions is that a function is a bijection if and only if it is
both surjective and injective. Indeed, many authors take this as the definition of bijections. The
concept of bijection is also closely related to the concept of invertible function.

Definition 2.2.2. A function f : X — Y is said to be invertible if there is a function g : ¥ — X
such that

fgy)=y and  g(f(x))=x
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forevery x € X and y € Y. Such a function g is called an inverse of f.

The idea behind the concept of invertible functions is that mapping an element via an invertible
function can be undone by means of a function in the reverse direction. Thus, if f : X — Y is an
invertible function with inverse g : Y — X, then if we map an element x € X to f(x) € Y, we can
undo this by mapping it back to g(f(x)) € X which is equal to x. Furthermore, the function f is
also inverse to the function g so that if we map an element y € Y to g(y) € X, we can undo this by
mapping it back to f(g(y)) € Y which is equal to y.

Theorem 2.2.3. A function f : X — Y is a bijection if and only if it is invertible.

Proof. Suppose first that f is a bijection. To construct its inverse g, we must assign to each element
y € Y an element x € X. By the assumption that f is a bijection, we are given that the set

{xreX|f(x)=y}

has exactly one element. Thus, we let g(y) be the unique element of this set. By definition, we have
f(g(y)) = y. To see that g(f(x)) = x, note that x is the unique element in the set

e X|f(x)=rf}

Thus, if we can show that g( f(x)) is also in this set, then it follows that g( f(x)) = x. In other words,
our plan is to show that f(g(f(x))) = f(x). However, this follows at once from the definition of g,
using the element y := f(x). This shows that f is invertible.

For the converse, assume that f is invertible with inverse g, and consider the set

{xreX|f(x) =y}

Observe that g(y) is in this set, since f(g(y)) = y by the assumption that g is an inverse of f. Thus,
the set has at least one element. It remains to show that it has at most one element. To see this,
consider two elements x and x’ such that f(x) = y and f(x”) = y. Then we obtain that

x=g(f(x) =¢g(y) =g(f(x)) =x".

This shows that any two elements in the set {x € X | f(x) = y} must be equal, so it has at most one
element. m|

2.3 Counting Bijections

Recall that the set [n] consists of all natural numbers strictly smaller than n. That is, the set [n] is
the set {0, ...,n — 1}. If n = 0 this set is understood to be empty. Assuming that n > 0, the largest
element of [n] is therefore n — 1.

Intuitively, a bijection from [n] to [n] is determined, at least for n > 0, by first specifying the
value of the largest element n — 1, which may be any element x < n, and second by picking a
bijection [n — 1] = [n] \ {x}
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Definition 2.3.1. The factorial function n — n! is defined recursively by
0!:=1,
(n+ D! :=nl(n+1).

In the following proposition we prove the number of bijections [n] = [n] on the standard
n-element set is the number n!. In other words, the factorial function counts the number of bijections
on the standard n-element set.

Proposition 2.3.2. The number of bijections [n] = [n] from the standard n-element set to itself is
exactly n!.

Proof. The proof is by induction on n. For the base case, let n = 0. Then [n] is an empty set, and
there is exactly one function [n] — [n], the empty function. This function is a bijection, because
assuming an element of an empty set is an inherent contradiction.

Now suppose that the number of bijections [n] = [n] is n!. We claim that for each y € [n + 1]
there are exactly n! bijections f : [n + 1] = [n + 1] such that f(n) = y.

To see this, we first define the rransposition function s, , defined by

n ifx=y,
Syn(x) =4y ifx=n,

x otherwise.

In other words, the function s, , swaps the elements n and y, and leaves the other elements fixed.
This function is a bijection, because we can verify that the preimage s;}n(z) is a singleton set for
every z € [n+1]. The preimage s;h (n) is the singleton set { y}; the preimage s;ln () is the singleton
set {n}, and the preimage s;}1 (x) is the singleton set {x} otherwise.

Now we observe that the function

([n+1]=[n+1]) > ([n+1] = [n+1])

given by g — s o g is itself a bijection, because it is an invertible function. Indeed, it is its own
inverse, because s o s o g = g for any bijection g.

Thus, if f : [n+ 1] = [n + 1] is a bijection such that f(n) = y, then s o f is a bijection
satisfying s( f(n)) = n. In other words, every bijection satisfying f(n) = y corresponds uniquely
to a bijection satisfying f(n) = n.

Now we observe that there are exactly n! bijections f : [n + 1] = [n + 1] satisfying f(n) = n.
Indeed, such bijections are uniquely determined by their restriction to the set [r], and by the
induction hypothesis there are n! such bijections. Since there are n + 1 possible choices of a value
y, we conclude that there are n!(n + 1) bijections altogether from [n + 1] to [n + 1]. O

To wrap up this section, we give a lower bound for the factorial n!. Recall that the exponential
function is defined by the infinite series
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(o)

Here, the quantity e := ), , % is Euler’s number, of which the first few terms are

! 1+1+l 1+1+ —1+1+1+1+1 1+
o 1 2!34‘ 5! 2 6 24 120

The terms from 1/0! to 1/5! addup to 2 + 18260 ~ 2.71 - - -, which correctly estimates the value of e
up to two decimal digits.

Theorem 2.3.3. For any positive natural number n, we have the strict inequality

n n
(—) <nl.
e

Proof. For positive x, every term ’;l—r,l contributes a positive amount to the exponential function. This
gives the strict inequality

— < e
n!
We may simply take x = n to obtain
n}’l
— <",
n!
and the theorem is obtained by rearranging. O

Remark 2.3.4. The strict lower bound for n! given in Theorem 2.3.3 is not the best known esti-
mate of the factorial function. Nevertheless, its proof is elementary, and it can be used in basic
number-theoretic estimates. The best approximation to the factorial function is given by Stirling’s

approximation formula:
n\n
n! ~V2nn (—) .
e

This means that the ratio of the quantities n! and V2zn(n/e)" tends to 1 as n becomes arbitrarily
large. While Stirling’s approximation formula is certainly applicable in number theory, we shall
have no need for it in the present introduction to the subject and therefore we will omit the proof.

2.4 Counting Subsets

A subset A of a set X is a set consisting entirely of elements of X. Subsets may be empty, they may
contain some elements of X, or they may also contain all elements of X. When A is a subset of X,
we write

ACX.

Subsets of X can be formed using predicates over the elements of X. Predicates are propositions
or conditions about indeterminate elements. For example, the assertion that n is an even natural
number is a predicate with the indeterminate natural number n. This predicate determines the subset
of all even natural numbers

0,2,4,6,....
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Often, we write P(x) for a predicate on the indeterminate element x. The subset determined by this
predicate is the set of all the elements x that satisfy the condition P(x). Such sets are conveniently
defined by set-builder notation:

{xeX|Px)}.

For example, the set of even natural numbers can be written in set-builder notation as follows:
{n € N | niseven}.
Here, the condition that n is even could also be expressed through the logical formula
J(kew)2k = n,

asserting that there exists a natural number k such that the number 2k is equal to the number
n. Nevertheless, we often find ourself preferring expressions in natural language that convey the
intended meaning more easily.

To avoid any complications of constructive logic, we shall assume that all predicates are
decidable, meaning that for every predicate P(x) on the indeterminate element x and for any
element a, we can decide whether or not the property P(a) holds. The typical predicates of concern
in elementary number theory, until the real and complex numbers are considered, are indeed provably
decidable.

Subsets of a finite set X are determined by a function X — {0, 1}. Indeed, given a subset A of
X, we define its characteristic function y 4 by

1 ifx €A,

0 otherwise.

xa(x) := {

Conversely, any function f : X — {0, 1} determines the subset

{xeX|f(x)=1}.

Thus, we can go back and forth between (1) subsets of a set, (2) predicates on a set, and (3) functions
from a set into {0, 1}. All of these are equivalent descriptions of the concept of subset.

Since subsets of X are equivalently described as functions from X into the set {0, 1}, it follows
immediately that if X is an n-element set, then the number of subsets of X is 2". To put it another
way: In order to determine a subset of X, there are two possibilities for every element of X. It
is either in the subset, or it isn’t. Thus, there are 2" combined possibilities determining distinct
subsets.

Knowing that the total number of subsets of an n-element set is 2", we now turn to the question:
How many k-element subsets are there of an n-element set? For example, the six 2-element subsets
of the set {1,2, 3,4} are

{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}.

The binomial coeflicients are introduced precisely to answer this question for general n and k.
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Figure 2.5: Pascal’s triangle. Counting from O from the top, the kth entry in the nth row is the binomial
coefficient (})).

Definition 2.4.1. The binomial coefficients (}) are defined recursively by

(g) - (kgl) =0
5] AN HE A

The binomial coefficients can be arranged in Pascal’s triangle, where each entry is the sum of
the two directly above it. At the top of the triangle we find the binomial coefficient (8). This is
Oth row of Pascal’s triangle. In the nth row from the top, we find the binomial coefficients (Z) for
0<k<n.

Theorem 2.4.2. Consider an n-element set S, and a natural number k. Then the number of
k-element subsets of S is the binomial coefficient (Z)

Proof. Since the binomial coefficients are defined recursively, this theorem is best proven by
induction on both variables.

If S has no elements and k = 0, then there is exactly one subset of S having k elements, the
empty subset. This shows that the number of 0-element subsets of S is (8).

If S has no elements, then there are no (k + 1)-element subsets of S, since any (k + 1)-element
subset has at least one element, but S has no elements. This shows that the number of (k + 1)-element
subsets of Sis (,° ).

k+1

If S has n + 1 elements, then there is exactly one subset of § with no elements, the empty subset.

This shows that the number of 0-element subsets of S is ("81).
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If S has n + 1 elements, then S has at least one element xy. Now there are two classes of
subsets having (k + 1) elements: the subsets containing x( and the subsets not containing xg. A
(k + 1)-element subset of S containing xg is equivalently described as a k-element subset of the
n-element set S \ {xo}, because its (k + 1)st element is the element x(. By the induction hypothesis,
there are exactly (Z) such subsets. Furthermore, a (k + 1)-element subset of S not containing xy is
equivalently described as a (k + 1)-element subset of the n-element set S \ {xo}. By the induction
hypothesis, there are exactly ( k:’_l) such subsets. Combining these two observations, we find that
the number of (k + 1)-element subsets of § is

)= () :

Next, we turn to the question of proving that any product of k consecutive natural numbers in
descending order
nn=1)---(n—k+1)

is divisible by k!. Such products are called falling factorials.

Definition 2.4.3. Let £ and n be natural numbers such that k < n. The kth falling factorial of n is
the number
ng:=nn-1)---(n—k+1).

The Oth falling factorial requires some explanation. It is the product of 0 consecutive integers
going down from n. The product of no numbers is an empty product, which is 1 by definition. Thus,
we have

nog = 1.

From here on, the falling factorials are less tricky: The first falling factorial of n is n; = n, the
second falling factorial of n is ny = n(n — 1), the third falling factorial of nis n3 = n(n—1)(n —2),
and so on.

We will prove that the falling factorial ny is divisible by the factorial k! using a combinatorial
argument, by first establishing that the falling factorials n; count something called k-permutations.
A k-permutation of n is essentially a list of length £ of nonrepeating elements of the set [n].

Definition 2.4.4. We define the set Py (S) of k-permutations of a set S recursively by:
(1) The set Py(S) of O-permutations of S is the set {*} with one element.

(i) The set Pr+1(S) of (k + 1)-permutations of S is the set

{(s;,t) [ s €S, teP(S\{s})}
of pairs (s, 1) consisting of an element in S and an k-permutation of the set S \ {s}.

Lemma 2.4.5. The number of k-permutations of an n-element set S is n.
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Proof. The proof is by induction on k. There is exactly one O-permutation of any n-element set. To
see that the number of (k + 1)-permutations of an n-element set is n - - - (n — k), note that such a
(k + 1)-permutation consists of a choice of an element of S, and a k-permutation on the remaining
n — 1-element set of elements. Thus, the number of (k + 1)-permutations on an n-element set is n
times the number of k-permutations on an (n — 1)-element set, i.e., it is

nn=1)---((n-1)—-k+1)=nn-1)---(n—k). O

Proposition 2.4.6. There is a bijection between the set of k-permutations of an n-element set S,
and the set

{(A,f)|ACS,f:{0,....k—1} = A}
of pairs (A, f) consisting of a subset A C S and a bijection {0, ...,k — 1} = A.

Proof. There is exactly one O-permutation of any n-element set S, and likewise the set of empty
subsets A of S equipped with a bijection [0] = A also contains exactly one element: the empty
subset equipped with the empty bijection.

For the inductive step, consider a (k + 1)-permutation (s, ) of S, consisting of an element
s and a k-permutation ¢ of the set S \ {s}. By the induction hypothesis, the k-permutation ¢
corresponds uniquely to a subset A C S\ {s} equipped with a bijection f : [n] = A. Thus, the
(k + 1)-permutation (s, ¢) corresponds to the subset B := A U {s} C S, equipped with the bijection
g:[n+1] = Bgivenby g(x) := f(x) forx <nand g(n) :=s. O

Proposition 2.4.7. The falling factorial ny, is divisible by k!.

Proof. By Proposition 2.4.6 there is a bijection between the set of k-permutations of the set S := [n],
and the set
{(A,f)|ACS, f:{0,...,k—1} = A}.

These two sets therefore have the same number of elements. Thus, it follows that

n
nkZ(k)-k!,

showing that the left-hand side is divisible by k!. O
Corollary 2.4.8. Formula for binomial coefficients. For any two natural numbers n and k such

that k < n, we have
n\ _ n!
k| kl(n—k)!

Proof. By the previous proposition we have
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2.5 The Binomial Theorem

If we expand the exponent (x + y)3, we get

(x+y) = (x+ ) +y)
= (% +2xy +y%) (x +y)
=X+ 2x2y +xy2 + x2y + 2xy2 + y3

=x+ 3x2y + 3xy2 + y3.
Going further, if we expand the exponent (x + y)*, we get

x+y)* = P +3x%y + 302 + ) (x + y)
=x*+3x%y +3x%y? + xy® + Py + 362y + 30y +y*
= x* + 433y + 6x%y? + 4xy? + 4

Now we might recognize an emerging pattern in the coeflicients of these polynomials: they are
all binomial coeflicients! The binomial theorem generalizes this result for all exponents #.

The binomial theorem has many proofs, including combinatorial proofs and algebraic proofs.
All these proofs have their own merits. We will present here an algebraic proof, using induction,
since it is the most easily applicable to settings other than the integers.

Theorem 2.5.1. The binomial theorem. In any number system, such as the natural numbers, the
integers, the rational numbers, the reals, the complex numbers', we have

(x+y)"=) (Z)xkyn_k.

k=0

Proof. We prove the statement by induction on n. In the base case, we find that both sides of the
equation

0
(x+y) = Z (Z)xkyO—k

k=0

'More generally, the binomial theorem applies to any semiring, conditional on the assumption that xy = yx.
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evaluate to 1, so the equation is true. In the inductive step, we have that

(x+y)n+1_(x+y)2()knk
:Z(") k+lnk+Z()knk+l
k
k=0
:xn+1+Z )k+1nk+Z()knk+l + yn!
:xn+1+Z kil)knk+l+2()knk+l 4yl
— il n TN\ ke yn—k+1 n+l
— +Z(k_1)+(k))xy -

n+1

_Z(n+l)k(n+l)k 0

The binomial theorem has a long history. The earliest known references to aspects of the
binomial theorem are found in the Chinese mathematical text Jiuzhang Suanshu (Nine Chapters on
the Mathematical Art), from approximately the 2nd century BCE. Around the 11th century CE, the
Chinese mathematician Jia Xian described a method for calculating binomial coefficients, which
corresponds to what we now refer to as Pascal’s triangle. This method was popularized by Yang
Hui in the 13th century CE, and thus Pascal’s triangle is sometimes called the Yang Hui triangle
in China. Isaac Newton was the first to generalize the binomial theorem to non-integer number
systems, in 1687 in his Principia Mathematica.

2.6 The Inclusion-Exclusion Principle
Consider two subsets A and B of a set X. The union of A and B is the set
AUB:={xeX|xe€Aorx € B}.

Given that X is a finite set, we may wish to determine the number of elements in A U B. Note,
however, that in general the answer is not found by simply adding up the number of elements of A
and the number of elements in B. Indeed, some elements might be contained in both subsets, and
they would therefore be counted double. Since every element in the intersection A N B is counted
twice, the correct formula for the number of elements in A U B is:

|AUB| = |A| +|B|-|ANB.
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Example 2.6.1. Consider the set X = {1, ..., 100}, and our goal is to find the number of integers in
X that are neither divisible by 2 nor by 3. This problem can be solved with the inclusion-exclusion
principle.

Let A and B be the subsets of X consisting of numbers divisible by 2 and by 3, respectively. The
set A N B then consists of all the numbers divisible by both 2 and 3; that is, the numbers divisible
by 6.

There are 50 numbers in X divisible by 2, there are 33 numbers in X divisible by 3, and there
are 16 numbers in X divisible by 6. Thus, the total count of numbers in X not divisible by either 2
or3is

100 - 50 — 33 + 16 = 33.

The inclusion-exclusion principle is a generalization of the formula for the number of elements
of A U B to any finite number of subsets of a set X. To see the pattern, let us consider the case
with three subsets A, B, and C of a set X. Now, if we wish to determine the number of elements in
A U B U C, we can again start by adding the numbers |A|, |B|, and |C|. Every element that was in
exactly one of the three subsets is correctly accounted for, but we have overcounted the elements in
ANB,ANC,and BN C. If we subtract the numbers |A N B|, |A N C|, and |B N C| from our total,
then we have correctly accounted for every element that was in at most two subsets. However, now
we have subtracted every element in A N B N C three times from our count, so we must add them
again to arrive at the correct number:

JAUBUC| = |A|+|B|+|C|-=|ANB|-|ANC|-|BNC|+]ANBNC|

Thus, we see an alternating pattern emerging: Single sets are added, intersections of two sets are
subtracted, triple intersections are added again, and so on. The inclusion-exclusion principle is
stated with this alternating pattern.

Theorem 2.6.2. Consider a set X and a finite family of subsets A; C X indexed by 1 <i < n. Then
the number of elements in the union of the subsets A; is given by

n
ArU-uAl= 3 DR YT A A
k=1

1<i|<<ig<n
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Exercises

Starter Exercises

2.1 In the empty copy of Pascal’s triangle at the end of this chapter, shade all the positions of the
odd binomial coefficients. It is not necessary to compute them all.
2.2 Prove that 2" < n! for all n > 4.
2.3 Prove that .
200>
k=0 k
in three different ways: using the binomial theorem, by a direct proof by induction, and by a
combinatorial proof.
2.4 Find the first 20 positive integers that are not divisible by any Fibonacci number other than 1.
2.5 Define the inclusion-exclusion sequence a, by ag := 0, a; := 1, and let a,,+ be the largest
positive integer so that the number of positive integers 1 < x < a,4+ not divisible by any a;
for 2 <i < nis a,. Determine the values for a, for 1 <n < 10.

Routine-Building Exercises

2.6 Show that the strict inequalities

4 2
< " < 4"
2n+1 n

hold for all n > 1.
2.7 Prove that

= (n
( )(—1)’< =0.
k=0 k
Conclude that
LfJ(n) L(n—ZI)/ZJ( n )
— 2k — 2k +1

In this formula, the floor | x| of a number x is the largest integer below or equal to x.
2.8 The hockey-stick identity. Show that

(=)

2.9 The Chu—Vandermonde identity. Use the binomial theorem at the polynomial (x+1)" (x+1)"

()=

i=0
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S =6)

k=0

2.10 Show that

2n

The binomial coefficient ()

2.11 Show that

) is also called the central binomial coefficient.

S +m+ 1
S k+0= (m+1)z(” mz )
k=0 i=0 m+
2.12 Consider a set A C N, and let the sets Py(A) and P;(A) be defined as follows:

Po(A) ;= {S CA|Ysssiseven} and Pi(A) :={SCA| T,essisodd}.

Show that there is a bijection bijection f : Py(A) — P;(A) if and only if the set A contains
an odd number. Use this bijection to conclude that for n > 1, there are exactly 2"~! subsets
S Cc {1,...,n} whose sum of elements is even.

Challenge Exercises

2.13 (a) Show that in the nth row of Pascal’s triangle all the entries are odd precisely when
n =2k — 1 for some k.

(b) Show that in each row of Pascal’s triangle, the number of odd entries is always a power
of 2.

2.14 A derangement is a bijection f : A — A such that f(x) # x for every x € A. We define the
derangement number !n to be the number of derangements on an n-element set.

(a) Compute !n for0 < n < 6.
(b) Show that the derangement numbers satisfy the following recurrence relation:

m+2)=m+1)({(n+ 1)+!n).
(c) Use the principle of inclusion-exclusion to show that

e (=DF
!n—n!Z 0

k=0
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Chapter 3
The Integers

3.1 Cyclic Sets

Natural numbers count elements of finite sets. The empty set has zero elements, the set of solutions
to the equation 3x — 3 = 0 has exactly one element, the booleans have exactly two elements, true
and false, and so on.

Natural numbers have been around for at least as long as humans count. But what do negative
numbers count? Surely, there are no sets with —5 elements! One explanation of negative numbers
is that they represent deficits. In other words, integers can be thought of as differences between
natural numbers. This point of view is completely valid, and we will come back to it. There is,
however, a more structural and conceptually compelling way of thinking about integers, using cyclic
sets. Cyclic sets are an often recurring structure in mathematics. Some of the prettiest proofs of
Fermat’s Little Theorem and Wilson’s Theorem use them.

When we map out a bijection f : A — A from a finite set A to itself by displaying an arrow
between each element and its value under f, as we did in Figure 3.1, we discover that the finite set
A gets partitioned into cycles. The iterated action of f on an element a is mapped out by tracing
along the arrows, which eventually loops back to itself. An intuitive reason for this phenomenon is
that by iterating f often enough, we obtain a sequence

a, f(a), f*(a), ...

Figure 3.1: A bijection on a 12-element set.

41
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Figure 3.2: A cyclic set with 12 elements.

Y

which must eventually have repeated values since the set A was assumed to be finite. If " (a) is the
first n such that f*(a) = f™(a) for a later value of m, then we must have n = 0. Indeed, if n > 0
then we find that

FU @) = F(f" (),
which implies by the assumption that f is a bijection that f"~!(a) = " !(a). This is impossible
by the minimality of n, so we must have n = 0. We conclude that the iterations of f trace out cycles.
Such cycles are called orbits.

Definition 3.1.1. Consider a set X with a bijection f : X = X. Then we say that two elements
x,y € X are in the same orbit of f if there exists a natural number k such that f¥(x) = y or
f¥(y) = x; that is, if one can be reached from the other by iteratively applying f.

An orbit of f is defined to be an inhabited subset U C X so that all elements of U are in the
same orbit.

The bijection on the 12-element set in Figure 3.1, for example, has three such orbits. Since
bijections on a set partition the set into cyclic orbits, we can now define a cyclic set to be a set
equipped with a bijection that has exactly one orbit, so that all the elements of the set fit in the same
cycle. In Figure 3.2 we displayed an example of a cyclic set.

Definition 3.1.2. A cyclic set is a pair (X, s) consisting of a set X and a bijection s : X = X that
has exactly one orbit.

Remark 3.1.3. Since orbits are assumed to be inhabited—that is, nonempty—subsets of a set X, it
follows that cyclic sets are always inhabited. Indeed, if U is the unique orbit of a cyclic set, and U
is inhabited by an element x € U, then we have x € X. Thus, empty sets are not considered to be
cyclically structured.

Example 3.1.4. Every inhabited standard finite set can be given the structure of a cyclic set. The
cyclic structure on the standard finite set [z + 1] is given by

O, 1,2 ---—>n~—0.
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Figure 3.3: A cyclic-structure map from a 14-element set to a 7-element set.

This cyclic structure can be defined precisely without much trouble. However, to avoid cluttering
these pages, we will postpone the definition until the Euclidean Division Theorem.

3.2 Maps Preserving Cyclic Structure

An important organizational principle of structural mathematics is that when we define a certain kind
of structured sets, such as cyclic sets in our case, then it is good practice to also define the structure-
preserving maps between them. Doing so allows us to learn more about how such structured sets
relate to each other. Thus, we will now introduce cyclic-structure maps. As we will see shortly,
maps preserving the cyclic structure on a set have some interesting properties, and they feature
prominently in our structural definition of the set of integers.

Definition 3.2.1. Consider two cyclic sets (X, s) and (Y,#). Amap f : X — Y issaid to be a
cyclic-structure map if

f(s(x) = 1(f(x))
for every x € X. We will write hom((X, s), (Y, 1)) for the set of all cyclic-structure maps from
(X,s)to (Y,1).

For example, if (X, s) is a cyclic set, then s is always a cyclic-structure map onto itself. To see
this, we simply note that the equality

s(s(x)) = s(s(x))
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Figure 3.4: Cyclic-structure maps are defined by ‘‘winding’’ the source cyclic set around the target cyclic set.

holds trivially. In Figure 3.3 we displayed an example of a cyclic-structure map from a 14-element
set to a 7-element set. More generally, the idea of a cyclic-structure map is that we can overlay
the elements of a cyclic set X onto the elements of a cyclic set Y so that the cyclic structure of the
overlay matches the cyclic structure of Y. This means that in a cyclic-structure map, we can’t skip
any elements.

Theorem 3.2.2. Consider two cyclic sets (X, s) and (Y, t) with a cyclic-structure map f : X — Y
between them. If X is an m-element set and Y is an n-element set, then m is a multiple of n.

Proof. For each y € Y consider the set

1) ={xeX]| flx) =y}

consisting of all the elements in X that have the value y under f. Then the bijection s : X — X
restricts to a bijection

st ) = N (s(y).

Thus it follows that all the sets of the form f~!(y) have the same size. Since X is the union of these
sets, it follows that the size of X is n times the size of the set f~!(y). O

Cyclic-structure maps have the special property that if they share an equal value for a given
input, then they are equal everywhere. Indeed, suppose that f, g : X — Y are two cyclic-structure
maps between cyclic sets (X, s) and (Y, 1) such that f(x) = g(x) for some x € X. By the cyclic
structure of X, it follows that for every x” € X, there exists a natural number k such that sk(x) =«
or s¥(x”) = x. Thus there are two cases to consider. If s¥(x) = x” then it follows that

) = f(s5 () = s5(f () = 55 (g(x) = g(s* (x) = g (x).

On the other hand, if s*(x") = x then it follows that f(x") = g(x’) if and only if s*(f(x")) =
sk(g(x")), which follows from the calculation

SO = F(85 () = fx) = g(0) = g(s* (¥) = 5" (g(x).

The previous observation can be used to prove the following theorem:
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Figure 3.5: The infinite cyclic set of integers.

Theorem 3.2.3. Consider two cyclic sets (X, s) and (Y,t). If the set
hom((X, s), (Y, 1))
of cyclic-structure maps from (X, s) to (Y, t) is inhabited, then it is itself a cyclic set.

Proof. The function h + t o h is a bijection from hom((X, s), (Y, ¢)) to itself. To see that it has
exactly one orbit, consider two cyclic-structure maps f,g : X — Y, and let xo € X. Then there
exists an integer k such that

“(f(x0) = g(xo)  or  1*(g(x0)) = f(x0).

In the first case it follows that ¥ o f = g, while in the second case it follows that t* o g = f. Thus it
follows that f and g are in the same orbit of the map 4 +— t o h. O

The organizational principle of defining structured sets along with their structure-preserving
maps comes from category theory, a mathematical discipline which emphasizes structural mathe-
matics. What we have defined here is the category of cyclic sets. In this course we won’t rely on
category theory, but the curious reader might find Emily Riehl’s book Category Theory in Context
of interest [Rie2016]. Riehl is a world-famous professor in our department.

3.3 A Structural Definition of the Integers

Although the examples we have discussed so far are finite, the definition of cyclic sets isn’t restricted
to finite sets. We could indeed imagine a very large cyclic set that extends infinitely in both directions,
as in Figure 3.5. If such a set has a designated zero element, we could use it as the starting point
to describe the other elements as the iterated successors and the iterated predecessors. This way,
we would expect to find one element for each integer. Alternatively, as we are about to do now, we
could take the infinite cyclic set as the definition of the set of integers!

Definition 3.3.1. The set of integers is specified to be a set Z equipped with an element 0 € Z and
a bijection S : Z = Z such that for every set X, every element xy and every bijection 4 : X = X
uniquely determine a function f : Z — X such that

@) f(0) = xo, and
(i) f(S(a)) = h(f(a)) for every a € Z.

Such functions are said to be defined by integer recursion.
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For example, integer recursion can be used to define iterated bijections f* : A = A for any
bijection f : A = A. The idea is entirely analogous to the idea of iterated functions, where a
function f : A — A could be iterated any natural number of times. For iterated bijections, we
restrict to the case of a bijection f : A = A, which allows us to also consider the negative iterations
of f by using the inverse of f. In order to formally define iterated bijections, we need the following
theorem:

Theorem 3.3.2. For any bijection f : A = B and any set X, there are bijections
—of:(B=X)=(A=X)
fo—-:(X=A)=(X=B).
Proof. Suppose f : A = B is a bijection with inverse f~!. Then for any bijection g : B = X we
have
gofofl=g and goflof=g

This shows that the function — o f~! is inverse to the function — o f. Similarly f~! o — is inverse to
the function f o —. O

Definition 3.3.3. Consider a set X equipped with a bijection f : X = X. Then we define for each
integer k the kth iteration of f by

f0:=id
fi = fo .
This definition is possible, since composing with f on the left is a bijection (X = X) = (X = X).

The specification of the set of integers with integer recursion also allows us to formulate an
induction principle for the integers. This induction principle states what one should do in order to
show that a proposition P(x) is true for all integers x.

Theorem 3.3.4 (Integer Induction Principle). Consider a property P(a) parametrized by an integer
a. In order to prove that P(a) is true for all a, it suffices to prove:

(1) The property P(0) is true.
(ii) The logical equivalence P(a) < P(a + 1) holds for all a € Z.

Note the similarity with the induction principle of the natural numbers: We have to prove a base
case and an inductive step. However, in the inductive step we have to prove two directions:

P(a) = P(a+1) and P(a+1) = P(a).

In other words, there are two steps in the inductive step: the forward step and the backward step.
In the forward step, you will assume P(a) as the inductive hypothesis as usual, and the task is to
prove that P(a + 1) holds. In the backward step, you will assume P(a + 1) is true, and the task is to
prove that P(a) holds. In Section 3.5 we will use the integer induction principle to prove the laws
for integer arithmetic.
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Proof. Consider a property P(a) of the integers, such that P(0) is true and for which the logical
equivalence
P(a) ® P(a+1)

holds. In order to show that P(a) is true for every integer a, we will use the recursion principle for
Z. Thus, we have to construct a set A equipped with an element ag € A and a bijection s : A = A.
We define the set A by

A:={ae€Z]|P(a)},

so that A consists of exactly those integers a for which P(a) holds. Clearly, we have 0 € A, so
we choose aq := 0. In order to define a function s : A — A, observe that for a € A, the property
P(a) holds by assumption, which implies P(a + 1) so that a + 1 € A. Thus, we simply define
s(a) :=a+1.

To see that s is a bijection, we define an inverse z. For any a € A, consider the unique integer b
such that S(b) = a. Such an element is indeed uniquely determined since S : Z — Z is a bijection.
Since P(a) holds, it follows that P(b) holds, so we find that b € A. Thus, we define ¢(a) := b. It
follows immediately from the definition of 7 that the identities s(#(a)) = a and #(s(a)) = a hold.
Thus we see that 7 is an inverse of s, which concludes the proof that s is a bijection on A.

By the specification of Z, it follows that there is a unique function f : Z — A such that

f(0)=0 and  f(S(a)) = S(a).

Now we claim that f(a) = a for all a € Z. To see this, note that by the inclusion of A C Z we may
regard f as a function Z — Z satisfying the equations

f(0)=0 and  f(S(a)) = S(a).

However, there is a known function satisfying these equations: the identity function x — x, which
is often denoted by id. Since f is uniquely determined by its equations, which are also satisfied by
the identity function, it follows that f and the identity function must be the same. Thus it follows
that f(a) = a for all a € Z. Furthermore, since we have f(a) € A by definition, we obtain that
a € A for every integer a. Thus we conclude that the property P(a) holds for all a € Z. O

The induction principle for the integers may be used, for instance, to prove that the integers
form a cyclic set.

Theorem 3.3.5. The pair (Z, S) consisting of the set Z of integers and the successor bijection S is a
cyclic set. Furthermore, for any cyclic set (Y,t) there is a unique cyclic-structure preserving map
from (Z,S) to (Y,t).

Proof. Our goal is to show by integer induction that every integer a is in the orbit of 0. Clearly 0 is
in the same orbit as itself, so the base case is trivial. For the inductive step, we have to show that x
is in the orbit of 0 if and only if S(x) is in the orbit of 0.

For the forward implication, there are two cases to consider. Either there is a natural number
k such that S¥(0) = x or there is a natural number k such that S¥(x) = 0. In the first case, it



48 CHAPTER 3. THE INTEGERS
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Figure 3.6: The set Z consists of the lattice points on the axes with natural number coordinates. Along the
a-axis we find the nonnegative integers in their usual spots, while along the b-axis we find the nonpositive
integers.

immediately follows that S¥*1(0) = S(x). In the second case it follows that S*(S(x)) = S(0), which
implies that S*~1(S(x)) = 0. Thus we see that in both cases, S(x) is in the orbit of 0.

For the reverse implication, there are again two cases to consider. Either there is a natural
number k such that S¥(0) = S(x) or there is a natural number & such that S¥(S(x)) = 0. In the first
case, it follows that S*=1(0) = x. In the second case, it follows that S**!(x) = 0. In both cases it
follows that x is in the orbit of 0, completing the proof.

The final claim follows immediately by the integer recursion principle. O

3.4 Constructing the Integers from the Natural Numbers

We have given a structural definition of the set of integers as the universal cyclic set. We think
of this as the specification of the integers. In this section we will construct a set that meets this
specification.

Definition 3.4.1. We define the set Z¢ of cartesian integers by
Zc = {(a,b) e NXN | ab = 0}.

The zero-element of Z¢ is defined to be the element (0,0). We define the successor function
s : Z¢c — Zc recursively on b by

s(a,0) :=(a+1,0)
s(a,b+1):=(a,b).

Theorem 3.4.2. The successor function s : Z¢ — Zc is a bijection.
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Proof. We prove that it is a bijection by constructing its inverse t : Z¢ — Z¢. The function 7 is
defined recursively on a by

t(0,b) :=(0,b+ 1)
t(a+1,b) :=(a,b).

The proof that s o r = id is by induction on a. We have s(7(0, b)) = s(0,b + 1) = (0, b) proving
the base case, and we have

s(t(a+1,b)) =s(a,b) = (a+1,b)

since b = 0 in this case.
Similarly, the proof that # o s = id is by induction on . We have t(s(a,0)) = t(a+1,0) = (a,0)
proving the base case, and we have

t(s(a,b+1))=t(a,b) =(a,b+1)

since a = 0 in this case. This completes the proof that ¢ is an inverse of s, and hence s is a
bijection. O

Theorem 3.4.3. The set Z¢ equipped with the zero element (0,0) and the successor function s
satisfies the specification of the integers in Definition 3.3.1.

Proof. Consider a set X equipped with a point xo € X and a bijection 4 : X = X. Then we define a
function f : Z¢ — X by recursion on a and b:

£(0,0) := xo
fla+1,0) :=h(f(a,0))
£(0,b+1) := h™'(£(0,b)).
This function satisfies f(0,0) = xo by definition. We claim that

f(s(a,b)) = h(f(a,b))

for every (a, b) € Z¢. The proof is by induction on b. For the base case, observe that the equalities
f(s(a,0)) = f(a+1,0) = h(f(a,0)) hold by definition. For the inductive step, note that the
equality £(0,b + 1) = h=1(£(0, b)) implies that 4(f(0,b + 1)) = £(0, b). Using this, we obtain

f(s(0,b+1)) = f(0,b) = h(f(0,b + 1)).
Thus far, we have proven that there exists a function f : Z¢ — X satisfying
f(0,0)=x0  and  f(s(a,b)) = h(f(a,b)).
It remains to show that this function f is unique. O

Knowing that there is a set that meets the specification in Definition 3.3.1, we shall now abandon
the set Z¢ again, and we will consider Z to be an arbitrary set as specified in Definition 3.3.1.
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3.5 Integer Arithmetic

We can now define addition of two integers, just as we did for the natural numbers, by using the
iterated successor bijection. Furthermore, since iterated bijections are again bijections, we obtain
something that we didn’t get for the natural numbers: For every integer y there is a unique integer x
such that x + a = y. In other words, we can define differences of integers.

Definition 3.5.1. We will define addition of two integers and the additive inverse of an integer:
(i) For any two integers a and b, we define
a+b:=5)),

where S? is the bth iteration of the successor function S : Z = Z. Henceforth, we will write
a + 1 for S(a).

(i) For any integer a, we define —a to be the unique element in the set
{(x€Z|x+a=0}.
Such an element is indeed uniquely determined, since S¢ is a bijection.

Before we start proving the laws of addition and the additive inverse of the integers, we will
show how addition interacts with iteration.

Theorem 3.5.2. For any bijection f : X = X with inverse =, and for any x € X, we have

FP0) = )
) = (F7H ).

Proof. For the first identity, we will use integer induction on b. It is clear that
) = £ = OO0,
so the base case holds. To see that
e =) e ) = ()

note that f2++D (x) = £(f**?(x)) and f2*1(f%(x)) = f(f?(f%(x))). Furthermore, since f is a
bijection, it follows that f(y) = f(z) if and only if y = z. In our case we get:

@) = ) & FUP ) = U ))

PN fa+(b+1)(x) — fb+l (fa ()C))
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This completes the proof of the first identity. The second identity is proven by integer induction on
a. Since —0 = 0, it follows that

@) =@ =x= (0.
For the inductive step, we calculate in similar fashion:
F@) = (YY) e e o) = FN Y ()
e (@) = £F((FH )

PEN f—(a+1) — (f_l)a+1(x). O
Theorem 3.5.3. Addition of integers satisfies the following laws:
(a+b)+c=a+ (b+c), a+(b+1)=(a+b)+1,
a+0=a, (a+1)+b=(a+b)+1,
O+a=a, a+b=>b+a.

a—-a=0,
Proof. By the previous theorem, we calculate:
(a+b)+c=5a) =8 @) =a+(b+c).
Next, note that the unit law a + 0 = a holds because
a+0=25%a)=a

Similarly, we note that 0 + a = a by induction on a. The base case is covered in the previous step.
For the inductive step, we have to show that

O+a=a =3 O+(a+1)=a+1.
This can be seen by chaining the injectivity of the successor function and associativity:
O+a=ae 0+a)+1=a+1
S0+(a+1)=a+1.
The fact that a — a = 0 follows from the observation that
a—a=0+a)—a=5%S0)) =0.

The right successor law a + (b + 1) = (a + b) + 1 is an instance of the associativity law, which we
have already shown. On the other hand, the left successor law (a + 1) + b = (a + b) + 1 is proven
by induction on b.

The two unit laws a + 0 = a and 0 + @ = a combined settle the base case for the inductive proof
that a + b = b + a. For the inductive step, we have to show that

a+b=b+a = a+(Mb+1)=(b+1)+a.

This follows from the injectivity of the successor function and the left and right successor laws that
we have previously shown. O
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Next, we define multiplication of integers.

Definition 3.5.4. We define the operation a, b — ab on the integers by

a0:=0
a(b+1):=ab+a

This well-defined, since for any integer a, the function x — x + a is a bijection.

Theorem 3.5.5. Multiplication of integers distributes from both sides over addition: For any three
integers a, b, and ¢ we have

a(b+c)=ab+ac and (a+b)c =ac+bc.

Proof. We will prove only the first equation, leaving the other equation as an exercise. To show that
multiplication of the integers distributes from the left over addition, we will use integer induction
on c¢ to show that for any two integers a and b we have a(b + ¢) = ab + ac.

In the base case, we simply note that

a(b+0)=ab=ab+0=ab + a0.
For the inductive step, we have to show that
Vaveza(b +c) =ab + ac S Vapeza(b+ (c+ 1)) =ab+a(c+1).

For the forward implication, assume that a(b + ¢) = ab + ac is true for any two integers a and b.
Then we have

ab+(c+1)=a((b+1)+c)=ab+1)+ac=ab+a+ac=ab+a(c+1).

For the reverse implication, assume that a(b + (¢ + 1)) = ab + a(c + 1) is true for any two integers
a and b. Then we have

alb+c)=a((b-1)+(c+1))=a(b-1)+a(c+1)=ab—-a+ac+a=ab+ac. 0O.
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Exercises

Routine-Building Exercises

3.1 Show that multiplication of integers is associative: For any three integers a, b, and ¢ we have
(ab)c = a(bc).
3.2 Show that multiplication of integers is commutative: For any two integers a and b we have
ab = ba.
3.3 Show that multiplication with a nonzero integer a satisfies the cancellation law
ax = ay = X =y.

3.4 Prove that for any two integers a and b, either b < a ora < b.

3.5 Suppose that X is a set equipped with an element xo € X and a bijection 4 : X = X. Show
that the image of the unique map f : Z — X determined by x( and 4 is a cyclic set.

3.6 Prove the identity

1
a3+b3+c3—3abc:§(a+b+c)((a—b)2+(a—c)2+(b—c)2)

and conclude that if a + b + ¢ = 0, then we have

a’ + b3+ ¢ =3abe.
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Part 11

From the Ancients to Fermat
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Chapter 4

Euclidean Division and the Representability
Theorem

4.1 Notation for Numbers

The decimal representation of integers is well-embedded in our culture: Any integer can be uniquely
represented as a sequence of digits from O to 9, where the leading digit is nonzero. When we write
a number such as 231, it represents the number two hundred and thirty-one, which consists of
two lots of hundred, three lots of ten and one unit. Similar representations exists in binary (using
only the digits 0 and 1), and in hexadecimal notation (using the digits O to 9 and the letters A to
F representing digits of values 10 through 15). The binary representation of the number 231 is
(11100111),, while the hexadecimal representation of this number is (E7);¢. In each of these
representations of the number 231, the position of the digits relative to each other is significant for
its value. Such ways of writing numbers are therefore called positional. Positional number systems
have a long history, going back to the Sumerians in ancient Mesopotamia. The Sumerians were
known for using a sexagesimal system, which is in base 60. They used cuneiform script, which was
also the earliest form of writing.

On the other side of the world, the Mayans developed roughly between 400 BCE and 150 CE a
vigesimal numerical system; that is, a system base 20. Notably, there was no contact between the
Mayans in Mesoamerica and civilizations in Africa, Asia, or Europe. They had thus developed their
number system entirely independently, and conversely their number system did not influence the
Indian and Arabic developments which would eventually make its way into the modern mathematical
tradition. The Mayans were the first known civilization to have notation for the number 0.

Although zero was conceived independently by the Mayans, the modern digit O has its roots in
the Indian mathematical tradition. One of the earliest known occurrences appears in the Bakhshali
manuscript, a collection of around seventy birch-bark leaves, many of which are fragmentary. It
was discovered by a farmer in 1881 near Bakhshali in present-day Pakistan. The text was written in
an early form of the Sarada script, and the number 0 was denoted by a dot. Radiocarbon analysis
shows that different leaves date from between the 3rd and 9th centuries CE, which suggests a long
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Table 4.1: The sexagesimal system in cuneiform script was developed by the ancient Sumerians in
Mesopotamia, around 3200 BCE, and continued to be used by the Babylonians. Note that there was no
notation for the number 0 in cuneiform script. Consequently, there was no visual distinction between the
numbers 1, 60, and 3600, and so on.

process of compilation and copying. Nevertheless, instances of the number O occur on leaves dating
from the 3rd or 4th century CE, making this one of the earliest surviving records of the modern
number 0 in written form.

The earliest surviving stone inscription of the number 0 was found in the ruins of a temple in
Mekong, Cambodia, by the French archaeologist George Coedes. He catalogued this stone tablet
as K-127. It mentions the year in which the temple was built, the year 605 of the Saka era, which
corresponds to the year 683 CE. The number 0 again appeared as a dot.

Another famous early inscription of the number 0 can be found in the Chaturbhuj temple in
Gwalior, India, from 876 CE. The numerals were written in an early Nagari script, in which the
number 0 already had its modern, circular form. The inscription tells of the temple built on a piece
of land 270 hastas in length and 187 hastas in breadth. Since the O is used at the last digit of a
number, as opposed to a placeholder in the middle of a number, this is considered to be the earliest
occurrence of 0 as a numeral.

We saw that throughout the history of human civilization, we have seen numerical systems with
various bases. The decimal system is most common nowadays, a sexagesimal system was used by
the Sumerians and Babylonians, a vigesimal system was used by the Mayans, and other systems
such as the binary and hexadecimal systems are used by computers. The following mathematical
theorem may not come as a surprise anymore: Any number £ > 1 can serve as the basis of a
numerical system. We will prove this theorem using the Euclidean Division Theorem, which itself
rests on the Well-Ordering Principle of the Natural Numbers.
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4.2 The Well-Ordering Principle of the Natural Numbers

The induction principle of the natural numbers implies other important reasoning principles. One
of them is the well-ordering principle. The well-ordering principle has many practical implications.
For example, in the next section we will apply a variation of the well-ordering principle, which we
will describe below, to construct division with remainder.

Theorem 4.2.1 (Well-Ordering Principle of the Natural Numbers). Any inhabited subset of the
natural numbers has a least element.

Proof. We will prove, by induction on n, that every subset A C N with n € A has a least element.
In the base case we have to show that every subset A C N containing 0 has a least element.
Since 0 is the least natural number, it follows that any subset containing O must have a least element.
For the inductive step assume that every subset A C N containing »n has a least element. Our
goal is to show that every subset A C N containing n + 1 has a least element. There are two cases
to consider: either 0 € A or 0 ¢ A. In the first case, where 0 € A is assumed, then A clearly has a
least element. In the second case, define the subset B C N to be

{xeN|x+1€A}.

In other words, B is the set of all natural numbers x such that x + 1 isin A. Sincen + 1 isin A
by assumption, it follows that n € B. However, note that we are in position to apply the induction
hypothesis now: The set B must have a least element m.

We claim that m + 1 must be the least element of A. First of all, we know that m + 1 € A because
m € B. Second of all, if x € A then we know that x is nonzero. This means that x = x’ + 1 for some
natural number x’. In other words, we have x” + 1 € A, which means that x’ € B. Since m is the
least element of B it follows that m < x’. This implies thatm + 1 < x" + 1, som + 1 < x follows.
This shows that any element of A must be greater than or equal to m + 1. In other words, m + 1 is
the least element of A. O

We also have some variations of the well-ordering principle that apply to subsets of the integers.
For the following theorem, we say that a subset A C Z is bounded from below if there is an integer
b such that b < x for every element x € A. Similarly, we say that a subset A C Z is bounded from
above if there is an integer b such that x < b for every element x € A.

Theorem 4.2.2. Let A be a subset of the integers. We make the following two claims:
(1) If A is inhabited and bounded from below, then A has a least element.
(i1) If A is inhabited and bounded from above, then A has a largest element.

Proof. For the first claim, assume that A is inhabited and suppose that b < x for every element
x € A. Then we define the subset

B:={xeZ|x+beA}.
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The subset B is inhabited and it is bounded from below by 0. This means that B is in fact a subset
of the natural numbers, and so it has a least element by the well-ordering principle, Theorem 4.2.1.
Observe that x € B if and only if x + b € A, so if x is the least element of B then x + b is the least
element of A. This proves the first claim.
The second claim follows from the first, because if A is inhabited and bounded from above, then
the set
B:={xeZ|-xeA}

is inhabited and bounded from below. Since the set B has a least element by the previous claim, it
follows that the set A has a largest element. O

4.3 Euclidean Division

The Euclidean division operation with a divisor d > 0 is the operation that returns for each integer
a the division with remainder of a by d. More specifically, the Euclidean division operation of a by
an integer d returns two integers, the quotient g and the remainder r, such that 0 < r < d and such
that

a=q-d+r

For example, if a := 23 and d := 5, then the Euclidean division operation returns g := 4 for the
quotient, and r := 3 for the remainder. Note that we have 0 < 3 < 5, and the identity

23=4-5+3

holds. We will prove that for every d > 0 there is always a unique such pair (¢, r) of integers
satisfying the two constraints for Euclidean division. Before we do so, we first explain in more
detail how to go about unique existence proofs.

Suppose X is a set and P(x) is a property of the elements of the set X. For a concrete example,
which we will work out below, take X to be the set N of natural numbers and P(x) to be the property
that x = 0. Now suppose someone asks you to prove that there is a unique element x that satisfies
P(x). Then your task splits up in two parts:

(1) First, you have to prove existence. Here, your task is to find a concrete element a € X and
prove that it satisfies the property P(a).

(i1) Second, you have to prove uniqueness. This means that you have to show for any two elements
x and y, if both P(x) and P(y) hold then we must have x = y. In other words, in the uniqueness
part of the proof you are tasked with showing that there is at most one element satisfying P.

The existence part of the proof ensures that at least one solution exists, while the uniqueness part of
the proof ensures that there is at most one solution. Both steps combined allow us to conclude that
there exists exactly one element of x such that P(x) holds. In a logical formula, it is customary to
write 3! ex)P(x) for the unique existence property.
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The example where we take X := N and P(x) := x = 0 is simple, but it captures the essence of
unique existence proofs. To show that there is a unique natural number equal to 0, we first have to
give an example of a natural number that is equal to 0. We simply take the number 0 itself. For the
uniqueness part of the proof, we have to show that any two numbers that are equal to O are equal to
each other. This is evident, because they are both equal to 0. Thus we conclude that

3!(n€N)n = 0.

Theorem 4.3.1 (The Euclidean Division Theorem). Consider an integer a and an integer d > 0.
Then there exists a unique pair of integers (q,r) such that 0 < r < d satisfying the identity

a=q-d+r.

Proof. Consider the set
A={xeZ|xd<a}

of integers x whose product with d is at most a. We will show that A is bounded from above and
that A is inhabited. Together, this will imply by Theorem 4.2.2 that A has a largest element, which
will be our quotient g.

First, we show that the set A has an upper bound. There are two cases to consider: either a > 0 or
a < 0. If a > 0, the integer a is an upper bound because for any x € A we have x < max(0, xd) < a.
If a < 0 then the integer 0 is an upper bound because xd < a < 0 implies that x must be negative.

Next, we observe that the integer —|a| is always in the set A, because —|a|d < —|a| < a.
Therefore it follows that the set A has a largest element, which we will call g.

By definition ¢ satisfies gd < a and ¢ is the largest such element. By maximality of ¢ it follows
thata < (¢ + 1)d = gd + d. Now we take r := a — gd. Since gd < a it follows that 0 < r, and
since a < gd + d it follows that r < d. This completes the existence of ¢ and r.

It remains to prove uniqueness. Suppose that (¢, r) and (g’, r’) are two pairs of integers satisfying
0<r<d,0<r" <d,and the equations

a=gqd+r, and a=q'd+r'.

It follows that

(g-q¢"d=r"—-r.
However, the integer r’ — r satisfies the strict inequalities —d < r’ — r < d and it is divisible by d.
This implies that r’ — r = 0, so it follows that » = r’. Now it also follows that (¢ — ¢’)d = 0. Since
d was assumed to be positive, this implies that g — ¢’ = 0, from which it follows that ¢ = ¢’. This
completes the proof of uniqueness. O

4.4 The Representability Theorem

Theorem 4.4.1. Consider a natural number k > 1. Then there exists for every natural number n a
unique list € of digits do, . . ., d;—1 of length [, such that the inequalities 0 < d; < k hold for each
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i < I, such that the leading digit d;— # 0, and satisfying the equation

n= li dik'.
i=0

Before proving the theorem, let’s first discuss the main idea behind the proof. Since we assumed
that £ > 0, it follows from the Euclidean division theorem, Theorem 4.3.1, that there is a unique
pair (g, r) of numbers such that n = gk + r and 0 < r < k. This gives us the first digit in the
representation theorem': the number dj := r.

The representability theorem would now follow if we already knew that g has a unique repre-
sentation. If dyp = r and if dy, . .., d;_; is the unique representation of g, then the list dy, . .., d;—;
is a unique representation of n. However, the usual induction principle doesn’t allow us to make
this step, because n is not necessarily the successor of g. Therefore we need something stronger:
the strong induction principle.

Theorem 4.4.2. Consider a property P(n) of the natural numbers, and assume that the following
two conditions hold:

(1) The property P(0) is true.
(ii) If the property P(k) is true for all k < n, then the property P(n + 1) is true.
Then P(n) is true for all n.

The strong induction principle can be formulated more succinctly using the universal quantifier.
The universal quantifier V is used to express that a property is true for all elements in a domain of
discourse. In other words, when we say that a property P(n) is true for all natural numbers n, we
can write that as the logical formula

Y (nen) P(n).

Using universal quantification, we can state the strong induction principle as follows. Suppose that
the following two conditions hold:

(i) The property P(0) is true.
(ii) If the property Vi<, P(k) is true, then the property P(n + 1) is true.

Then P(n) is true for all n. The universal quantifier is helpful in the proof of the strong induction
principle.

Proof. Let P(n) be a property of an arbitrary natural number n, and define

Q(n) := V(mSn)P(m)

'Tt should be noted that this digit appears last in the actual representation. It is the “ones digit” of the representation.
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Note that in order to prove that P(n) is true for all n, it suffices to prove that Q(n) is true for all
n. Indeed, if Q(n) is true for all n, that just means that P(m) is true for all m < n, for all n. In
particular P(n) is true for all n.

With that out of the way, assume that P(0) is true, and that Q(n) implies P(n + 1) as in the
induction step of the strong induction principle. Our goal is to show that P(n) is true for all n, and
we have already shown that it suffices to show that Q(n) is true for all n. We proceed by induction
on n.

For the base case we need to prove that Q(0) is true, meaning that P(m) is true for all m < 0.
Note that m < 0 implies m = 0, so the base case follows from the assumption that P(0) is true.

For the inductive step, assume that Q(n) is true. Our goal is to show that Q(n + 1) is true.
However, we have assumed that Q (n) implies P(n + 1). Now notice that if Q(n) is true, meaning
that if P(m) is true for all m < n, and if P(n + 1) is true, then P(m) is true forallm < n + 1. In
other words, Q(n + 1) is true. This completes the inductive step and therefore the proof. O

Our earlier idea to prove the representability theorem can finally be made into a proof.

Proof of Theorem 4.4.1. We prove the theorem by strong induction. For the base case, note that
the empty list satisfies the requirements vacuously since there are no digits in the empty list and
empty sums are set to be 0. Thus the empty list is a representation of 0. Now suppose that
¢ = (dy, ...,d;—1) is a representation of 0 and ¢ is a list of nonzero length /. By the requirement
that the leading digit d;—; is nonzero it follows that the sum

-1

Z dik’

i=0

is nonzero. Such a list is therefore not a representation of 0. The only representation of O is therefore
the empty list.
Now suppose that every number m < n has a unique representation. To show that the number
n + 1 has a unique representation, first note that there is a unique pair (g, r) of numbers g and
0 < r < k such that
n+1=qgk+r.

There are two cases to consider: either ¢ = 0 or ¢ # 0. In the first case we find thatn + 1 = r < k.
We let ¢ be the list (dp) of length 1 with dy := r. Its leading digit is nonzero because n + 1 is
nonzero, and clearly we have

0 .
Y dik=do=n+1.
i=0

Furthermore, this representation is unique because any representation of n + 1 must be a list of
digits of length 1, which fixes its digit do ton + 1.
If g # 0, then we have the inequalities

q+1<2¢g<gk<gk+r=n+1.
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The second inequality follows from the assumption that k > 1. Since g + 1 < n + 1 it follows that
g < n. This puts us in position to apply the induction hypothesis of the strong induction principle:
The number ¢ has a unique representation (e, ..., e;—1). Now we define the representation of n + 1
to be (dp,...,d;), where dp :=r and d;4 :=¢; for0 <i < [.

This representation of n + 1 is unique, because for any representation of n + 1, its dyp must be
equal to r, and the list (dy, . . ., d;—1) must be a representation of ¢, which is unique, thus completing
the proof. O

4.5 Some Combinatorial Applications of the Euclidean Division
Theorem

The Euclidean Division Theorem can be used to obtain some elementary combinatorial application.
We will make use of the pigeonhole principle, which is commonly attributed to Gustav Lejeune
Dirichlet, who used this principle brilliantly in his approximation theorem. The idea of the pigeon-
hole principle is that if we place n objects in m boxes, and m is strictly smaller than 7, then there is
a box containing more than one object. The pigeonhole principle underlies a remarkable array of
existence results across number theory and combinatorics. Among classical number-theoretic appli-
cations, one finds the aforementioned approximation theorem of Dirichlet, the Erd6s—Ginzburg—Ziv
zero-sum theorem, and the Chevalley—Warning theorem on solutions of systems of polynomial
congruences. The pigeonhole principle is stated formally as follows:

Theorem 4.5.1 (The Pigeonhole Principle). Consider two natural numbers m < n, and a function
f: X =Y froma set X with n elements into a set Y with m elements. Then there exists an element
y such that f(x) =y for more than one element x.

In the present chapter, we will be content with some very elementary applications of the
pigeonhole principle in combination with the .

Theorem 4.5.2. Consider two positive integers m < n. In any set of n integers, there is a pair of
distinct integers such that their difference is divisible by m.

Proof. Consider a set A of size n of integers, and list, for every integer in A its remainder after
division by m. Since the remainder is a number between 0 and m — 1, it follows from the pigeonhole
principle that there must be at least two distinct integers x and y with the same remainder. It follows
that x — y is divisible by m. O

Theorem 4.5.3. Consider two positive integers m < n. In any set of n integers, there is a nonempty
subset such that the sum of its elements is divisible by m.

Proof. Consider the n integers ay, . . ., a,, and consider the sums

0, a;, ay+as, ..., a1 +---+a,.
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By Theorem 4.5.2 it follows that at there are at least two of these sums that differ by a multiple
of m. Notice that the difference of two such sums is of the form a; + - - - + a;, so the theorem is
proven. ]

Theorem 4.5.4. Consider positive integers m and n such that m < 2" — 1, and consider a set of
integers S of size n. Then there are two distinct nonempty subsets of S such that the difference of the
sums of their elements is divisible by m.

Proof. There are 2 subsets of S, of which 2¥ — 1 are nonempty. By Theorem 4.5.2 it follows that
there are two distinct nonempty subsets of S such that the difference of their sums is divisible by
m. O
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Exercises

Routine-Building Exercises

4.1

4.2

4.3

4.4

Prove that among any choice of n + 1 numbers from the set {1, ..., 2n}, there will be two
distinct numbers that sum to 2n + 1.
Show that a number written as d;_1 - - - dg in its decimal representation is divisible by 11 if

and only if the alternating sum

-1

2, (-1d

i=0
is divisible by 11. For example, the number 2541 is divisible by 11 because —2+5—-4+1 =10
is divisible by 11.
Show that for any natural number n > 0 there is a unique pair of numbers (m, r) such that
the only square dividing r is 1, and

n:mzr.

This is called the square-free decomposition of n.
Show that for any natural number n > 0 there is a unique pair of numbers (k, m) such that

n=2%Qm+1).

This is called the 2-adic representation of n.

Challenge Exercises

4.5

Zeckendorf’s representation theorem. Show that for any natural number n there is a unique
list £ = (dp, . ..,d;—1) of digits 0 and 1, such that its leading digit d;_; is nonzero, no two
consecutive digits are both 1, and satisfying the identity

I-1
n= Z diFi,
i=0

where F; is the jth Fibonacci number. Zeckendorf representations have some fun applications:

(i) The Zeckendorf representation theorem can be used in the design of any document to
get meaningful relative font sizes: If d;_ - - - d is the Zeckendorf representation of a
font size n, then adding an extra zero at the end gives the Zeckendorf representation
di—1 -+ - dp0 of a good next font size. If you are working with font size 12, what is the
next sensible font size?

(i) Zeckendorf representations can also be used to convert miles to kilometers with a fair
degree of accuracy. Again, given a number n of miles, with Zeckendorf representation
di—1---dpy, add a 0 at the end to get the Zeckendorf representation d;_; - - - do0 of the
number of kilometers. How fast is 65 mph in kph according to this conversion?
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4.6 (Erdds—Szekeres) Show that any sequence ay, . . ., d,;,+1 of real numbers contains either an
increasing subsequence of length m + 1 or a decreasing subsequence of length n + 1.
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Chapter 5

Linear Diophantine Equations

In this section we study linear Diophantine equations. These are equations of the form
aopxo+ -+ aix; = b,

with integer coeflicients ao, . . ., ax. The objective of a linear Diophantine equation such as the one
above is to find integers xo, . . ., x; for which the equation holds, to study conditions under which
the equation has integer solutions, and ultimately to characterize all solutions.

5.1 Divisibility

The simplest linear Diophantine equation is the equation ax = b in one variable x. The condition
of its solvability leads to the concept of divisibility.

Definition 5.1.1. We say that an integer a divides an integer b if there exists an integer x such that
the equation
ax=b

holds. When a divides b, we write a | b and we say that a is a divisor of b. Sometimes we also
refer to b as the dividend.

The integers —1, 0, and 1 have special properties with respect to divisibility:

(i) The integers 1 and —1 divide any integer b. Indeed, the integer b itself is a solution to the
equation lx = b, and the integer —b is a solution to the equation —1x = b.

(1) Every integer a divides 0. Indeed, x = 0 is a solution to the equation ax = 0.

(iii) If O | b for some integer b, then it follows that b = 0. Indeed, if Ox = b has a solution,
then b = 0 because Ox = 0. Furthermore, we observe that every integer is a solution to the
equation Ox = 0.

On the other hand, it follows that 0 1 1, and indeed that O { b for any nonzero integer b.

69
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(iv) Similarly, but slightly more complicated, if a | 1 for some integer a, then it follows that
a = +1. Indeed, if ax = 1 has a solution, then the absolute value |a| of a cannot be greater
than 1, because its nonzero multiples would be of absolute value greater than 1. Therefore it
follows that |a| = 1, which proves the claim. In the situation where a | 1, we say that a is
invertible, or that it is a multiplicative unit, because the solution to the equation ax = 1 is a
multiplicative inverse of a.

If a is a nonzero integer, then there is always at most one solution to the equation ax = b. In
other words, if a nonzero integer a divides an integer b, then its quotient is uniquely defined. On
the other hand, we just saw that every integer is a solution to the equation Ox = 0. The quotient is
therefore not uniquely defined in this case. In the following lemma we remove this ambiguity by
imposing an extra bound on the solution, that |x| < |b|. In the case where a is nonzero, then this
condition is automatically satisfied, while in the case where a = 0 it imposes the zero solution.

Lemma 5.1.2. Suppose that a | b. Then there is a unique integer x such that |x| < |b| satisfying
the equation ax = b. We will write a /b for this unique integer, which is called the quotient of b
divided by a.

Proof. There are two cases to consider: either a = 0 or a # 0. In the case where a = 0, having a
solution ax = b implies that b = 0. In this case, any x is a solution to the equation ax = b. Howeyver,
only one solution x satisfies |x| < b, namely x = 0. Thus, the quotient 0/0 is set to be 0.

If a # 0, then the function x +— ax is injective. This means that ax = ay implies x = y.
Consequently, there can be at most one integer x such that ax = b. Since we assumed that
there is at least one such a solution, it follows that it is unique. Moreover, if ax = b, then
|x| < |allx| = |ax| = |b|, so x indeed satisfies the required bound. O

Remark 5.1.3. While we have given an informal description, the definition of divisibility features the
existential quantifier 3. When we write the logical formula 3,cx)P(x), this means that there exists
an element x € X for which P(x) holds. The definition of divisibility translates to the following
logical formula:

a | b= H(XGZ)ax =b.

In order to use existential quantification in proofs, it is useful to know how to break them down
systematically. There are two cases to consider: (1) How to prove an existence claim, and (2) how
to use an existence claim as an assumption to prove something else.

(i) The principal way to prove that there exists an element x € X such that P(x) holds, is to
construct an element x of X and prove that the property P(x) is holds.

(i1) To use that there exists an x € X such that P(x) holds in the proof of another property Q,
you may assume to have an element x and you may assume that the property P(x) holds.
However, in this scenario we may not assume anything else about x unless that is otherwise
warranted.
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In the case of divisibility, in order to prove that a | » holds we must find a solution to the equation
ax = b, and in order to use that a | b holds as an assumption, we may assume x is an integer for
which the equation ax = b holds.

Proposition 5.1.4. If d divides a and b, then d divides ax + by for any two integers x and y.

Proof. Suppose that d divides both a and b. Let u and v be integers such that du = a and dv = b.
Then we have
ax + by = dux + dvy = d(ux + vy),

which shows that ax + by is a multiple of d. O

Sometimes, the hardest thing is to figure out how to rigorously prove a property that looks
completely self-evident. The following proposition, for instance, asserts that in any set of k
consecutive integers, exactly one of them is divisible by k.

There are, as is commonly the case in mathematics, several ways to approach this problem, but
the question is how to generate ideas towards a full proof. One good way of generating ideas is by
looking at special cases. In our problem at hand, a special case of interest is the set {0, 1, ...,k —1}.
There should be exactly one element in the set {0, 1,..., k — 1} divisible by k.

Indeed, this is a direct consequence of the Euclidean division theorem: the only element in
this set that has remainder O after division by £ is the integer 0. This suggests using the Euclidean
division theorem for the general claim as well. Furthermore, we will also use the common proof
technique of assuming something without loss of generality.

Proposition 5.1.5. In any set of k > 0 consecutive integers
{a,a+1,...,a+k -1}
there is exactly one element divisible by k.

Proof. First, consider the function
r:{a,a+1,...,a+k-1} - {0,1,...,k -1},

where r(x) is defined to be the remainder of x after division by k. We claim that this map is injective,
meaning that if »(x) = r(y) for two elements x and y, then x = y. To see this, consider two elements
x and y in the set {a, ...,a + k — 1}. Without loss of generality we may assume that x < y. Indeed,
either x < y or y < x holds, and these situations are completely similar, so nothing is lost if we just
assume that x < y.

We have the equalities x = g(x)k + r(x) and y = q(y)k + r(y), where ¢(x) and ¢g(y) are
the quotients of x and y after division by k, respectively. Since we assumed that r(x) = r(y), it
follows that y — x = (¢(y) — g(x))k. In other words, y — x is divisible by k. Furthermore, we have
0 < y — x < k because both x and y are in the set {a,...,a + k — 1}. It follows from Euclidean
division theorem that the only integer 0 < z < k divisible by k is 0, so we find that y —x = 0. We
conclude that x = y.
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It now follows that every element y € {0, 1,..., k — 1} is the value of r of exactly one element
x€{a,a+1,...,a+ k- 1}, because both sets have k elements and the map r doesn’t take any
value more than once. In particular, there is exactly one element x € {a,a + 1,...,a+ k — 1}
whose remainder after division by k is 0. In other words, exactly one element of this set is divisible
by k. O

Another approach that often works well, which was suggested in class by Lucy, is a proof by
contradiction. In proofs by contradiction, you assume the contrary and derive a contradiction. If
the contrary is impossible, then the original claim must be true.

Proof by contradiction. Let’s assume that there isn’t a unique integer in the set
{a,...,a+k -1}

divisible by k. There are two cases to consider: Either there are no elements divisible by k, or there
are at least two distinct elements divisible by k.

In the first case, by Euclid’s division theorem there is a unique pair (¢, r) such that a = gk + r,
and since a is not divisible by k it must be the case that r # 0. Now it follows that gk + k is

an element in {a,...,a + k — 1}, which is divisible by &, contrary to our assumption. Thus we
conclude that it is not true that none of the elements of {a,...,a + k — 1} is divisible by k.
In the second case, let x and y be distinct elements of {a, ..., a + k — 1} that are both divisible

by k. Assume without loss of generality, that x < y. Then we have 0 <y —x < k,and y —x is
divisible by k. By the Euclidean division theorem, we must have y — x = 0, which contradicts our
assumption that x and y are distinct. O

5.2 Ideals of Integers

Ideals are a concept from ring theory, which studies rings, which are sets equipped with addition,
subtraction, and multiplication, satisfying the most familiar laws of arithmetic:

(x+y)+z=x+(y+2), (xy)z = x(yz),
O+x=ux, 1x = x,
x+0=nx, x1l =x,
x—x=0, x(y+2z)=xy+xz,

-x+x=0, (x+y)z=x7+yz,
X+y=y+x.

Rings such as the integers satisfy additionally the law xy = yx of commutativity; such rings are
called commutative rings. Notice that the set N of natural numbers isn’t a ring, because it lacks
subtraction. Sets with the structure of a ring appeared in David Hilbert’s Zahlbericht, but their
formal definition was first given by Emmy Noether in Idealtheorie in Ringbereichen, who was also
the first to study them systematically.
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An ideal of integers is a subset I C 7Z that contains 0, and contains the linear combination
kx + ly for any x,y € I, and any k,[ € Z. The subset {0} C Z satisfies the conditions of being
an ideal in a trivial way; this ideal is called the zero ideal. The subset (a) := {ka | k € Z} also
satisfies the conditions of being an ideal; ideals of this form are called principal ideals, since they
are generated by a single integer. In the following theorem we show that every ideal of integers is
of this form.

Theorem 5.2.1. For every ideal 1 C Z there is a unique natural number n such that I = (n).

Proof. There are two cases to consider: Either I is the zero ideal, or / contains a nonzero integer.
In the first case it is clear that / = (0), and that O is the unique natural number n such that I = (n).
Thus we focus on the nonzero case.

Suppose that / contains a nonzero integer x. Then / contains the integer |x|, because |x| = +x.
In particular, 7 contains a positive integer. Therefore it follows that / contains a least positive integer
n. To see that I = (n), consider an element x € /. By the Euclidean division theorem, it follows
that x = gn + r, where O < r < n. Notice that r € I, since it is the difference x — gn of two elements
in /. Since r is nonnegative and » is the least positive integer in /, it follows that = 0, which gives
us that x = gn. Thus, every element in / is a multiple of n.

Now suppose that I = (n) and I = (m) for two nonzero natural numbers n and m. Then it
follows that m = gn and n = pm. Thus, we see that m = (pg)m, which implies that pg = 1.
Furthermore, both p and ¢ are positive integers, so we have p = 1 and ¢ = 1. This shows that
m = 1n = n, establishing uniqueness. O

The set of ideals of Z is ordered by inclusion: We write I C J for two ideals I and J, if every
element of 7 is an element of J. Note that (b) C (a) holds if and only if a | . The theory of ideals
of integers is therefore closely related to the theory of divisibility of integers.

5.3 The Ordering by Divisibility

The divisibility relation equips the sets of integers and natural numbers with a useful extra structure,
a partial ordering of their elements. The set of natural numbers equipped with the divisibility
relation is a poset, while the set of integers equipped with the divisibility relation is a preorder, a
slightly weaker structure.

Definition 5.3.1. A preorder consists of a set X and an ordering < of the elements of X, such that
(1) The ordering is reflexive. This means that x < x holds for every x.

(i) The ordering is transitive. This means that if x < y and y < z both hold, then x < z also
holds.

A poset, or partially ordered set in full, is a preorder (X, <) satisfying additionally the condition:

(iii) The ordering is antisymmetric. This means that if both x < y and y < x hold, then x = y.
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Theorem 5.3.2. The set of integers equipped with the divisibility relation | is a preorder, and the
set of natural numbers equipped with the divisibility relation | is a poset.

Proof. We first show that the set of integers with divisibility is a preorder. To see that the divisibility
relation is reflexive, note that x = 1 is a solution of the equation

ax = a.

Therefore, it follows that a | a for every integer a. To see that the divisibility relation is transitive,
assume that a | b and b | ¢. That is, assume that we have integers x and y such that ax = b and
by = c. Then it follows that

a(xy) = (ax)y = by = c.
In other words, c is divisible by a. This completes the proof that Z equipped with the divisibility
relation is a preorder.

To see that the natural numbers equipped with divisibility forms a poset, it remains to show that
the divisibility relation is antisymmetric on the natural numbers. Suppose that m | n and n | m; that
is, that there are natural numbers x and y so that mx = n and ny = m. By transitivity of divisibility
it follows that m(xy) = m. O

The diagram below is the Hasse diagram of the positive divisors of the number 120, a fragment
of the poset of the natural numbers ordered by divisibility.

Despite lacking antisymmetry, the preorder of the integers with divisibility is essentially equiva-
lent to the poset of natural numbers with divisibility. For every integer a there is a unique natural
number # satisfying n | a and a | n. This unique number is of course the absolute value of a. The
absolute value function x +— |x| preserves divisibility, which means that a | b implies |a| | |b|, and
it satisfies the logical equivalence

(a|b)A(b|a) e la| =|b]
for any integer a and any natural number n. Order preserving maps f : (P, <p) — (Q, <p) from a
preorder (P, <p) to a poset (Q, <p) that satisfy the logical equivalence (x <p y) A (y <p x) &

f(x) = f(y) forevery x, y € P are also called poset reflections. Every preorder has a poset refection,
but we will not need to go into that aspect of order theory in this course.



5.4. GREATEST COMMON DIVISORS 75

5.4 Greatest Common Divisors

Some preorders (P, <) satisfy the property that for any two elements a, b € P there is a maximal
element below both of them. This property can be formulated succinctly as follows: An element d
is a maximal element below a and b if it satisfies the logical equivalence

(x<a)A(x<b)e (x<d)

for every element x € P. If d satisfies this property, we also say that d is the meet of a and b. It is
common to write a A b for the meet of a and b, if P is a poset in which any two elements have a
meet.

The definition of meets needs some explanation. It uses the conjunction (A) and it uses logical
equivalence (<). The conjunction p A g of two propositions p and ¢ is the proposition that both p
and ¢g are true. The logical equivalence p < g is the proposition that p is true if and only if ¢ is
true. In other words, it is the conjunction of the proposition that p implies g and the proposition
that g implies p.

If d is the meet of a and b, then the logical equivalence gives two implications back and forth:

(1) Any element x that is below both a and b, must be below d.

(i) Any element x that is below d, must be below both a and b. In particular, d itself satisfies
d < d, so it follows that d < a and d < b. That is, d itself is below both a and b, and by the
first property it is the maximal such element.

We wouldn’t have this discussion if it didn’t apply for us. Indeed, we will show that the preorder
of integers with divisibility has meets. In the case of the integers, we will call such meets greatest
common divisors.

Definition 5.4.1. Consider two integers a and b. An integer d is said to be a greatest common
divisor of a and b if it satisfies the following logical equivalence

(x[a)A(x|b) & (x]d)
for every integer x.

Thus, a greatest common divisor of a and b is an integer d that divides both a and b, and any
integer that divides both a and b is a divisor of d. In other words, the signifier "greatest” refers to
the divisibility ordering of the integers.

Example 5.4.2. The greatest common divisor of 0 and 0 is 0. To see this, simply note that the
proposition
(x[0)A(x]0) & (x]0)

is true because any proposition is logically equivalent to the conjunction with itself. Here we see
why it was relevant to note that the word “greatest” refers to the divisibility ordering: Any integer
is a divisor of 0, but none of them are the greatest in the standard ordering <.
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Theorem 5.4.3. Any two integers a and b have a greatest common divisor, for which we write
gcd(a, b). Furthermore, there are integers k and [ satisfying Bézout’s identity

ax + by = gcd(a, b).

Proof. Consider two integers a and b, and let  := (a) and J := (b) be the principal ideals generated
by a and b. Now consider the set

I+J:={x+ylxel,yel}

of all sums of elements of / and elements of J. We claim that the set / + J is again an ideal. It
contains 0, because 0 = 0 + 0 is a sum of elements in / and J. Furthermore, to see that / + J is
closed under linear combinations of its elements, consider two elements u,v € I +J. If u = x,, + y,
and v = x, + y,, then we can write any linear combination ku + /v of u and v in the form

ku+1lv = (kx, +Ix,) + (ky, + 1y,),

which is the sum of an element in / and an element in J. Thus, it follows that I + J is an ideal.

Now let d be the unique natural number such that / + J = (d), which exists by Theorem 5.2.1.
We claim that d is the greatest common divisor of @ and b. Notice thata = a+0 € I +J, so a must
be a multiple of d. Similarly, we have b = 0 + b € I + J, so b must be a multiple of d. In other
words, d is a common divisor of a and b. Furthermore, if e is any common divisor of a and b, then
e is a divisor of any element in / + J. In particular, we must have e | d, allowing us to conclude
that d is the greatest common divisor.

The last claim follows, because d is an element of / + J, which consists elements of the form
ax + by. m|

A very important condition on pairs of integers a and b, which occurs as an assumption in many
lemmas, propositions, and theorems, is the condition that gcd(a, ») = 1. In other words, that any
common divisor of @ and b must be 1. Such numbers are called relatively prime or coprime.

Definition 5.4.4. Two integers a and b are said to be relatively prime or coprime if
gcd(a,b) = 1.
The following proposition is a must-know fact about the integers.

Proposition 5.4.5. Consider two relatively prime integers a and b, and an arbitrary integer c. Then
we have
albcsalc.

Proof. The fact that a | ¢ implies a | bc is obvious, since if ¢ is a multiple of a, then so is bc. This
establishes the converse direction of the logical equivalence.

For the forward direction, assume that a | bc. Since we have assumed that @ and b are relatively
prime, there is a solution to the equation

ax+by=1.

Consequently, there is a solution to the equation cax + cby = c. However, both cax and cby are
divisible by a, so ¢ must be divisible by a. O
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5.5 Euclid’s Algorithm

Theorem 5.4.3 shows that any two integers a and b have a greatest common divisor ged(a, b), and
that there are integers k and / such that

ka + b = gcd(a, b),

but it doesn’t reveal much about how the integers k and / can be found, or even how to find the
greatest common divisor in the first place. This problem is solved by Euclid’s Algorithm, which
provides an efficient way to compute the greatest common divisor of two integers and to find integers
k and [ establishing the greatest common divisor as a linear combination. The algorithm relies on
the following proposition.

Proposition 5.5.1. Suppose a and b are two integers and b = qa + r. Then we have
gcd(b, a) = ged(a,r).

Proof. Suppose that d is a divisor of a. Then we claim that d | b if and only if d | r. Indeed, since
b = ga +r it follows that b is a linear combination of @ and r, and also that r is a linear combination
of a and b. Thus, any divisor of a and b is also a divisor of r, and any divisor of a and r is also a
divisor of 4. In other words, we have

dlbed|r.

It follows that d is a common divisor of a and b if and only if d is a common divisor of a and r.
This implies that their greatest common divisors coincide. O

As an immediate corollary, we obtain:
Corollary 5.5.2. If b is of the form ka + 1, then a and b are always relatively prime.

Euclid’s algorithm works by repeatedly using Proposition 5.5.1. For any pair (a, b) of integers,
if b # 0 then there is a unique pair (g, r) such that 0 < r < |bg| and such that the equality

a=qb+r

holds. This determines a new pair (a’, b") := (b, r) and gcd(a, b) = ged(b, r). Note that gcd(b, r)
i1s somewhat easier to compute, since the numbers involved are smaller. Repeating this procedure,
we obtain a list of equalities

ay =qiby +ry,
a = qaby + 12,

an = gnbn +ry,
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in which ay = a, by = b, a;j+1 = b;, biy1 = r;, and 0 < r; < |b;|. This procedure results in a
decreasing sequence r; > r > --- > ry of nonnegative integers, so it terminates when ry = 0.
Indeed, the Euclidean division theorem cannot be applied to the pair (by, ry) any further when
rny = 0. Since Proposition 5.5.1 implies that

gcd(a, b) = ged(by,r1) = ged(by,rp) = -+ = ged(by, ry),
we see that by is the greatest common divisor of a and b.

Example 5.5.3. We will illustrate Euclid’s algorithm by an example. Suppose we want to calculate
the greatest common divisor of 578 and 732. Then we write 732 in the form g - 578 + r; that is, we
write

732 =1-578 + 154.

By the Proposition 5.5.1, it follows that ged(732,578) = gcd (578, 154). We now proceed in the
same manner, by writing
578 =3-154 + 116,

and we observe that gcd(732,578) = ged(154, 116). We proceed with this process until we find
that gcd(732,578) = gecd(d, 0) for some number d. Once we reach this stage, we conclude that
gcd(732,578) = d. Putting words to action:

154=1-116+ 38 gcd(732,578) = ged(116, 38),
116 =3-38+2 gcd(732,578) = ged(38,2),
38=19-2+0 gcd(732,578) = ged(2,0).

Thus, we conclude that gcd(732,578) = 2.
A few further remarks about the sequence of equations
a; = qibi +r;

produced by Euclid’s algorithm are in order. Since each r; can be written as a linear combination of
a; and b;, it follows by induction that each r; can be written as a linear combination of a and b. In
other words, for each 1 <i < N, there are integers k; and /; such that

r; = kl-a + l,b

These linear coeflicients can be determined recursively, by what is called the extended Euclidean
algorithm. Notice that k; = 1 and [} = ¢g;. We also set kg := 0 and [y := 1. Then k;;; and /;; are
recursively determined by the rule:

kiv1 = ki-1 — qiv1k;,
liv1 =1lic1 — qinl;.

To see this, simply note that

Fivel = Qiv1 — Giv1biv1 = 1ic1 — qi1ri.
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Example 5.5.4. In the previous example, Euclid’s algorithm has given us that
gcd(732,578) = 2.

We will now express 2 as a linear combination of 732 and 578. We start with the first equation,
732 =1-578 + 154 to write

154 =732 -1-578.
Next, we use the equation 578 = 3 - 154 + 116 to write
116 =578 -3-154 =578 -3-(732-1-578) =4-578 —3 - 732.
Continuing this way, we find that
38=154-1-116=(732-1-578)—-1-(4-578-3-732) =4-732-5-578

and

2=116-3-38=(4-578-3-732)-3-(4-732-5-578) =19-578 - 15-732.
In the second to last equation, we find that 2 is a linear combination of 38 and 116; that is,

2=116-3-38.

However, by the equation before that we see that 38 itself is a linear combination of 154 and 116.
This can be used to express 2 as a linear combination of 154 and 116; that is,

2=116-3-(154-116) = 2=4-116-3-154.
Furthermore, 116 is a linear combination of 154 and 578, giving us that

2=4-(578-3-154)-3-154 = 2=4-.578-15-154.
In the final step, we use that 154 is a linear combination of 732 and 578 to find

2=4-578-15-(732-578) = 2=-15-732+19-578.

Theorem 5.5.5. Every nonempty list (qo, . . ., qn) of positive integers uniquely determines a pair
(a, b) of relatively prime positive integers such that a > b. In other words, there is a bijection

{(q0s--->qn) | gi = 1forall0<i <N} ={(a,b) | ged(a,b) =1anda > b > 0}.
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5.6 Linear Diophantine Equations in Multiple Variables

In this section we turn our attention to linear Diophantine equations in two variables, that is, integer
equations of the form
ax+ by =c.

We begin by applying the theory of ideals to establish that this equation has a solution if and only if
gcd(a,b) | c.

Theorem 5.6.1. Consider integers a, b, and c, and let d = gcd(a, b). The linear Diophantine
equation
ax+by=c

is solvable with integers x and y if and only if d | c.

Proof. The first part of the claim is equivalent to the claim that we have an equality of ideals

(a) + (b) = (ged(a, b)).

We recall that the ideal 7 + J consists of sums x + y of x € I and y € J. Furthermore, the ideals
(a) and (b) consist of multiples of a and b, respectively. Thus the ideal (a) + (b) consists of all
the linear combinations of a and b; in other words, all the possible integers ¢ for which there is a
solution to the equation ax + by = c.

In Theorem 5.4.3 we defined gcd(a, b) to be the unique natural number d such that (a) + (b) =
(d). Such a natural number exists by Theorem 5.2.1. Now we observe that the equality

(a) + (b) = (ged(a, b))

tells us exactly that the set of integers ¢ for which there exists a solution of the equation ax + by = ¢
has the same elements as the set of multiples of gcd(a, b). In other words, a solution to ax + by = ¢
exists if and only if ¢ is a multiple of the greatest common divisor of a and b. O

As an immediate corollary of the previous theorem, we note that:
Corollary 5.6.2. If a and b are relatively prime integers, then the linear Diophantine equation
ax+by=c
is solvable for any c.

Now that we have established a necessary and sufficient condition for its solvability, it remains
to describe a way of finding all solutions, if there are any. Notice that we have already collected
quite a bit of useful information. Euclid’s algorithm allows find a solution to the equation

ax+by=d,
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where d = gcd(a, b). Thus, if ¢ = kd, then we can solve
ax+by=c
by first finding a solution axy + byo = d by Euclid’s algorithm. Then we find that
a(kxg) + b(kyg) = kd = c.

In other words, we can use Euclid’s algorithm to find a solution to the equation ax + by = c if it
has any.

Proposition 5.6.3. Consider integers a, b, and c, and assume that a and b are relatively prime. If
axo + byy = c is a solution to the Diophantine equation

ax+by=c,
then every solution is of the form
X =xo + bk, and y =yo — ak.
Proof. Suppose that ax + by = c is another solution. Then it follows that
a(x —xo) + b(y - yo) =0.

In other words, we have a(x —xg) = —b(y — yo). Thus we see that b(y — yo) is divisible by a. Since
a and b are relatively prime, this implies that a | y — yo. Similarly, a(x — xq) is divisible by b, and
therefore it follows that b | x — x¢. Furthermore, if ka = y — yg and /b = x — x¢. Then the equation

lab —kab =0
implies that k = /. In other words, x = xo + bk and y = yo — ak. m|

Theorem 5.6.4. Suppose that axy, byy = c is a solution to the Diophantine equation
ax+ by =c.

Then every solution is of the form

b
x=x0+3k, and y:yo—f—ik.

Proof. This theorem follows from the previous proposition. If d = gcd(a, b), then we find that

a . b c
—X+-y=-.
aTd T
The integers 5 and g are relatively prime, so we find that x = xo + gk and y = yo — 5k for some

integer k. O
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Exercises

Starter Exercises

5.1
5.2
5.3
54
5.5

5.6
5.7
5.8

59
5.10
5.11
5.12

5.13

Show that a” — 1 is divisible by a — 1 for every integer a.

Show that a” + b" is divisible by a + b for any odd natural number n.

Show that if a | b, then d | b/a if and only if ad | b.

Suppose that a | b and b | ¢. Show thatif d | b/a then d | c/a.

Show that a | b implies ac | bc. Furthermore, show that if ¢ is nonzero, then ac | bc implies
a | b. Conclude that @ | b" if and only if a | b for any natural number .

Show that if a and ab are nth powers, then so is b.

Show that if ab and ac are squares, then so is bc.

Suppose that d is a common divisor of two nonzero integers a and b.

(a) Show that the greatest common divisor of a/d and b/d is ged(a, b)/d.
(b) Show that d is a greatest common divisor of a and b if and only if a/d and b/d are
relatively prime.

Show that a | bc if and only if a/gcd(a, b) | c.

Show that if gcd(a,b) = 1 andboth a | c and b | ¢, then ab | c.

Show that gcd(a”, b") = ged(a, b)".

Show that if d | a + b, then gcd(d, a) | ged(a, b) and ged(d, b) | ged(a, b). Conclude that
if a and b are relatively prime, then d is relatively prime to both a and b.

Consider three integers a, b, and c. Show that the following are equivalent:

(i) The integers a and b are both relatively prime to c.

(i) The integer ab is relatively prime to c.

Routine-Building Exercises

5.14

5.15

5.16
5.17

5.18

(a) Show that a® — b? is divisible by 8 for any two odd integers a and b.
(b) Show that (a? — 1)/8 is a triangular number for any odd integer a.
(a) Show that a® — a is divisible by 6 for every integer a.

(b) Show that

k+ _a3—a
2 6

[

k=1
for every a > 0.
(c) Use the previous identity to give a geometric interpretation of the numbers (a> — a)/6.
Show that @ — a is divisible by 30 for every integer a.
(a) Show that any three consecutive Fibonacci numbers are pairwise relatively prime.
(b) Find all n for which the five consecutive Fibonacci numbers Fj,, ..., F;,+4 are pairwise
relatively prime.
Show that n! + 1 and (n + 1)! + 1 are relatively prime for all nonzero n.
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Challenge Exercises

5.19 (a) Prove the Fibonacci addition formula F,+p+1 = Fus1Fpe1 + FuFy.
(b) For any integer d and any two natural numbers m and n, show that if two of the three
following conditions hold, then so does the third:

(@) d | Fp.
(i) d | F,.
(i) d | Foim-
(c) Show that the Fibonacci sequence preserves and reflects divisibility: We have m | n if
and only if F, | F,,.
5.20 (a) Show that if @ and b are both relatively prime to 24, then a® — b is divisible by 24.
(b) A generalized pentagonal number is a number of the form

3k + k
—

Show that if a is the nth integer relatively prime to 24, then the number

at -1
24

is the nth generalized pentagonal number.
(c) Let 0 < a < b < c be integers such that their squares form an arithmetic progression;
that is, the numbers a2, b2, and ¢? listed in increasing order have a common increment:

A:=b*-a*=c*- b

Show that A is a multiple of 24 [FS1987].
(d) Find five examples of triples (a, b, ¢) as described in part (a), and explain how you
found them.
5.21 (a) Consider two positive integers a and n such that gcd(a,n) = 1. Prove that there is a
natural number m such that .
n ‘ Z ak.

k=0

Hint: Apply the pigeonhole principle.
(b) Find the least positive integer m such that

m—1
k_ . o o
7‘;)10_11 1.

5.22 Show that if x and y are positive integers such that xy divides x> + y?, then x = y.
5.23 Show that 2" — 1 and 2" + 1 are relatively prime, provided that m is odd.
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5.24

5.25

5.26

5.27

5.28

5.29
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Show that .
+
(ak ) )lcm(a,a+ 1,...,a+k).
Show that in any subset of n + 1 integers from the set {1, ..., 2n}, there is a pair of distinct

integers such that one divides the other. Does the claim still hold for every subset of 7 integers
from the set {1,...,2n}?

(ErdSs) Show that any set of n + 1 integers chosen from an interval a, . .., a + 2n — 1 must
contain a pair of relatively prime integers.

Show that for n > 1 there are no solutions in the positive integers to the equation

ala+1)(a+2)=0>D".

More generally, Paul Erdds and John Lewis Selfridge showed that no product of at least two
consecutive integers can be an nth power for n > 1 [ES1975].

Find all solutions to the equation
3" -2"=1.

Aninterval a, . ..,a +n— 1 of consecutive positive integers is said to be stapled if it does not
contain any integer that is relatively prime to all the others [Eval969]. The sequence A090318
of the OEIS lists for each n the first positive integer a such that the interval a,...,a +n -1
is stapled, or O if no such number exists. This sequence starts to show nonzero values from
n = 17 onwards, with the value 2184 atn = 17.

(a) Check that the interval 2184, .. .,2200 is stapled.
(b) Show that in every interval of ten consecutive digits there is an integer that is relatively
prime to all the others. In other words, no interval of ten consecutive digits is stapled.



Chapter 6
The Rational Numbers

On the integers we have the arithmetic operations of addition, subtraction, and multiplication, but
we generally can’t divide integers and expect the result to be another integer. Instead, we have the
Euclidean Division Theorem which establishes division with remainder, and in the previous chapter
we introduced the basics of the theory of integer divisibility. Nevertheless, there is a clear sense of
ratios of integers, even if such ratios are not necessarily integers. It is thus natural to introduce the
concepts of integer fractions and the rational numbers.

6.1 Integer Fractions

Definition 6.1.1. An integer fraction is an expression of the form
a

b

in which a is an integer and b is a positive integer. In such an integer fraction, the integer a is called
the numerator and the positive integer b is called the denominator. Furthermore:

(i) Aninteger fraction 7 is said to be reduced or in lowest terms if a and b are relatively prime.

(i) An integer a can be presented as an integer fraction by .

(iii)) An integer fraction of the form % is called a unit fraction.

While it is common to think of rational numbers as integer fractions, there is a subtle distinction
between the concepts of integer fractions and rational numbers. For example, the two integer
fractions % and % have different expressions in terms of their numerators and denominators, but we
think of them as representing the same rational number. The rational sameness relation on integer
fractions is defined as follows.

Definition 6.1.2. Two integer fractions ; and § are considered the same if
ad —bc =0.

We will write % = % to mean that % and % are the same in this sense.

85
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— S

f‘ — a

Figure 6.1: There are 11 lattice points in the parallelogram spanned by (3, 4) and (5, 3), not including the
points (0, 0), (3,4), and (5, 3). This number is equal to the quantity 4 - 5 — 3 - 3, and it is also equal to the
number of reduced integer fractions between % and % with denominators not exceeding 7.

More generally, the quantity |bc — ad| is a measure for how far apart the fractions 7 and 5 are.
Assuming that the inequality 7 < % holds so that bc — ad > 0, we will show in Theorem 6.4.4 that
the number

bc —ad

counts the number of fractions 7 < < 5 such that the denominator ¢ does not exceed b +d. Indeed,
if £ = 5 then there should be no fractions strictly between § and 4, as is signified by the number
bc—ad = 0.

The quantity |bc — ad| is also the area of the parallelogram spanned by (a, b) and (c, d).
Moreover, there are exactly k lattice points in this parallelogram, excluding multiples of (a, ») and
(c,d).

Theorem 6.1.3. For any integer fraction 7 there is a unique reduced integer fraction 5 such that
7 ~ 5. Consequently, two integer fractions are the same if and only if they have the same reduced

integer fraction.
Proof. The reduced integer fraction 1‘;—' associated to an integer fraction 7 is defined by the integers

’ . a

, b
a = ———— :
gcd(a, b)

d =
an gcd(a, b)

This definition makes sense within the integers, since a and b are both divisible by the greatest
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common divisor gcd(a, b). To see that the fractions 7 and 2 are the same, we compute

This shows that for every integer fraction is the same to at least one reduced integer fraction. For
the uniqueness claim, we will show that any two reduced integer fractions that are the same, have
the same numerator and denominator. Let £ and 5 be two reduced integer fractions such that

ad —bc =0,

so that the equation ad = bc holds. Then we have d | bc, from which it follows that d | b by
Proposition 5.4.5. Conversely, we have b | ad so that b | d. Since b and d are positive integers
mutually dividing each other, it follows that b = d. Consequently, we obtain that ab = bc, which
gives that a = c. m|

By the remarks preceeding the previous theorem, we should expect there to be exactly one
reduced integer fraction in the interval strictly between 7 and &, provided that

bc —ad = 1.

This is the content of the following theorem.

Theorem 6.1.4. Suppose that ;; and 5 are reduced integer fractions satisfying
bc—ad =1.

Then there is exactly one reduced integer fraction ; < 7 < 5, namely the mediant

a+c
b+d

Proof. First, we claim that the function

a+ic
b+1td

r—

defines a bijection from the positive reduced integer fractions to the reduced integer fractions in
the interval of integer fractions strictly between 7 and 7. Indeed, if g is a positive reduced integer
fraction, then its value under this map is

ga + pc
gb + pd’
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Definition 6.1.5. Integer fractions can be added, subtracted, and multiplied according to the
following rules:

B c_ad—bc d ac ac
d- ba > " bd’

a ¢ ad+bc

+ a
b d  bd b

Furthermore, if the numerator of % is nonzero, then we can invert % by:

52

Theorem 6.1.6. Addition, subtraction, multiplication and inversion of integer fractions satisfies the
axioms of a field:

(x+y)+z=x+y+z2 (xy)z = x(yz2)
X+y=y+x Xy = yx
O+x=x Ix =x
x—-x=0 xx =1

x(y+2) =xy+xz.

Furthermore, adding, subtracting, multiplying or inverting integer fractions preserves the sameness
relation on integer fraction, in the sense that if we substitute each integer fraction in a sum, difference,
product, or inversion by one that is the same to the original, the result will be the same.

6.2 The Irrationality of Square Roots

Theorem 6.2.1. If a natural number n is not a perfect square, then its square root \/n is irrational.

Proof. We will prove the theorem by deriving a contradiction under the assumption that there is a

reduced integer fraction 7 such that

a?

ﬁ =n.
This equation is equivalent to the equation a> = nb?. Furthermore, we may assume without loss of
generality that @ and b are relatively prime, because we can always divide both sides of the equation

a® = nb? by ged(a, b)?. By this very equation, it follows that 5% | a>. Thus we have

b? = ged(a?, b?) = ged(a, b)? =1,

and we see that b = 1. However, this implies that n = a? is a perfect square, contradicting our

assumtion that » is not a perfect square. O
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6.3 Continued Fractions

Consider the numbers a = 193 and b = 71. Running Euclid’s algorithm on these numbers to find
their greatest common divisor, we obtain:

193 =2-71 +51,
71 =1-51+20,
51=2-20+11,
20=1-11+9,
11=1-9+2,
9=4-2+1,
2=2-1+0.

If we divide the top equation through by 71, we obtain the equation

193 .51
71 71°

Similarly, we have g—% =1+ g—?, and so on. Rewriting % to the fraction 1/ g—% then allows us to obtain:

193 1
W =2+ 50
1+ 57
Continuing this way, we find that
1 1
2 =2+
71 1
1+
1
2+
1
1+
1
1+ .
4 + 3

Such iterated fractions are called continued fractions. The fraction '%3 is a famously accurate

approximation of Euler’s number e, being correct to within a distance of 1/712, and its continued
fraction is the start of the continued fraction expansion of e. As we just saw, continued fractions are
closely related to Euclid’s algorithm, and indeed they are used for rational approximations of real

numbers.
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Definition 6.3.1. A finite (simple) continued fraction is an expression of the form
1
qo0 + )
qi +
q> +

1
4 —
qn

where q¢ is an arbitrary integer, each ¢; with i > 0 is a positive integer, and furthermore g, > 1.

The adjective simple refers to the fact that only the number 1 is ever used as a numerator. We

will generally assume that continued fractions are simple, so we will omit this disambiguation. A

commonly used compact notation for finite simple continued fractions is [go, g1, G2, - - ->qn]-
Infinite continued fractions are infinite expressions of the form

f]2+f

A more compact notation for infinite continued fractions is [go, ¢1,...]. The numbers ¢; in a
continued fraction [go, g1, . . .] are called the partial quotients.

Carl Friedrich Gauss had the following elegant notation for continued fractions, which is not
widely used anymore:

g+ K—=qgo+ ——m.
i=1 g; 1
+—
q1 1

QZ"'f

Here, the letter K stands for Kettenbruch, the German word for continued fraction. In the present
chapter we will mostly focus our attention on finite continued fractions. Infinite continued fractions
are an important way of uniquely representing arbitrary real numbers, and they have applications
in Pells equations, or more generally the study of quadratic fields, the theory of Diophantine
approximations, and the theorems establishing the transcendence of numbers like 7 and e.

Theorem 6.3.2. Every reduced integer fraction can be uniquely represented as a finite continued
fraction.

Proof. Consider two relatively prime integers a and b with b > 0. The proof is by strong induction
on b. In the base case, where b = 1, the unique finite continued fraction representing 7 is the
continued fraction [a], which has no fractional part.
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By the Euclidean Division Theorem there is a uniqge pair (g, r) of integers with 0 < r < b such
that a = gb + r. In the case where r = 0, we obtain that ;. = ¢, from which it follows that [g] is the
unique finite continued fraction representing ¢. In case r > 0 we write

a 1
E =q+ Z
r
The integers b and r are relatively prime with r < b. By the strong induction hypothesis, it follows
that % is uniquely represented as a continued fraction [¢q1, g2, . . . , g, ]. It follows that [g, g1, - - ., gx]
is a continued fraction representing 7. Furthermore, it is the unique such representation, since the
integer part of a continued fraction is uniquely determined as the largest integer below . O
Definition 6.3.3. Consider a continued fraction [qq, . . ., ¢x] or [qo, q1, - - -]. The continued frac-
tions
4i . _ [ ]
b qos - --»>qi

are called the convergents of the continued fraction.
The first few convergents of a continued fraction [qo, g1, .. .| are

a0 _ 40 ar _ qoq1 +1 42 _ 404192 + 40+ g2

by 1’ by g1 by q1q92 +1

so that ag = qo, bo = 1, a1 = qoq1 + 1, b1 = g1, and so on. For example, consider the continued
fraction [2, 1,2, 1, 1,4, 2], which we used at the beginning of this section to motivate the definition
of continued fractions. Its convergents are:

ap 2 a; 3 a 8 asy 11 ag 19

bo 1" by 17 by 3 by 47 by 1777

This sequence of fractions provides increasingly better rational approximations of Euler’s number e.
Notice that the numerators and denominators are increasing. In fact, one can check that the fraction
# is the best approximation of e using a denominator not exceeding 7, and the distance from % to
e does not exceed 71—2

We are thus naturally led to the question of determining the value of a finite continued fraction
[q0, - - -, qn, x], provided that we know the previous values. Note that the variable x occurs deeply
nested in the continued fraction. At first sight, computing the value for [qq, . . ., g,, x] thus seems
increasingly complicated as n gets larger. Euler faced the same problem in 1744, and he discovered
a nice pattern [Eull744, art. 7]. He recognized that if we recursively define the sequences a, and
b, by

ap = qo, a) :=qi14qo + 1, Ap+2 = gup+20n+1 + ap,
by =1, by :=q, bn+2 := qni2bps1 + by,
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then the fraction o is the nth convergent of the continued fration [gg, g1, . . .]. This observation
works even if the partlal quotients g; aren’t integers, which Euler took advantage of in order to
express some functions as continued fractions.

A key ingredient of Euler’s inductive proof is the identity

(q0s--->qn, 7] = [qo,...,qn+%].

Thus, we will need to distinguish in notation for the numerators and denominators of different
continued fractions with the same value. A good way to do this, is to explicity use the list of numbers
q0; - - - » @ In our notation for the numerator and denominator of [qo, . . ., g, ]: They will be denoted
by

aqO’“qu and bqO’-“?qn.

Or, to establish a more compact notation, if we write q = qq, . . ., ¢,, then we can write aq and bq
for the numerator and denominator of the continued fraction [q] = [qo, . .., gn].

Theorem 6.3.4 (Recurrence Theorem for Convergents). Define the numbers aq and by for every

finite continued fraction [q] = [qo, . . ., qn] by list recursion as follows:
a;:=q agr:=rq+1, Aqr,s := Saq, + dgq,
by =1 bgr:=r, bqr,s := sbq, + by.

Then we have Z—: = [q].

Proof. Since the numbers aq and bq are defined by list recursion, we will prove the claim with list
induction. Note that a, = g and b, = 1, so that

g
by (4]
Similarly, we have a,, = rq + 1 and b, , = r, so that
a +1 1
s I s = g,
g r r

We will do one more base case. Note that a, , ; = srqg+¢g +sand b, , ; = sr + 1. Then we have that

a Srq+q+s s 1
qgsr»s q9T4
= = =q+ = [q,r,s].
byrs sr+1 91 sr+1 9 r+ % g ]
For the inductive step, consider an arbitrary list [q] = [qo, - - -, ¢, ] and three more numbers r, s,

and ¢. Using the recursive definition of a and b as well as the inductive hypothesis in the final
equality, we note that

a
Aqrsi ldqrs+dqr Aars+ = (s + )aqr +aq Qg rs+l

1
= = =[q,r,s+7].
b r l [qa s 7
bq,r,s,t tbq,r,s + bq,r bq,r s+ q (S + )bq r bq bq,r,s+%

This completes the proof, since [q, 7, s + %] =[q,r,s,t]. |
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Theorem 6.3.5 (Determinant Identity for Convergents). For any continued fraction [q,r] =
[90,-..,qn, 1] Oof length n + 2, we have

aqrbq — bgqraq = (-1)".
Proof. In the base case we have
agrbg—byrag=(rg+1)—rq=1.
For the inductive step, assume that aq,bq — bq,-aq = (—1)". Then we compute:

aq’r’sbq’r - bq’r’saq’r = (Saq’r + aq)bq’r - (sbq’r + bq)aq’r
= agbqr = bqaq,

= -(-1)". :
Theorem 6.3.6. Consider a continued fraction [q] = [qo, . . . , gn]| with integer partial quotients q;.
Then the convergent
L= [q
by 1

is an integer fraction in lowest terms.

Proof. 1f each g; is an integer, then a4 and bq are determined by recursively adding and multiplying
integers, so they are integers. Furthermore, the determinant identity

aq,rbq - bq’raq = (_l)l’l.
shows that gcd(ag, bq) | (—1)", so aq and b are relatively prime. O
We summarize the above results for infinite continued fractions.

Corollary 6.3.7. Consider an infinite continued fraction [qo, q1, - . .| and define the sequences ay
and b, recursively by

ao = qo, ai :=qiqo+ 1, An+2 1= Gne2dn+1 + n,
bo =1, b1 :=qu, bn+2 = qns2bn+1 + by.
Then the fraction Z—” is the nth convergent of [qo, q1, - - .|, it is in lowest terms for every n, and we

n
have a,+1b, — by1a, = (=1)".
Furthermore, the numerators a, and denominators b, of the convergents of an infinite continued
fraction form strictly increasing sequences of integers for n > 0, and

an+1  ap _ (=1)"

bn+1 bn - bnbn+l-
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Example 6.3.8. Consider, for example, the continued fraction ¢ := [1, 1, ...] in which each partial
quotient is 1. Then the numerators and denominators of the convergents are determined recursively

by

ap =1, aj = 2, An+2 = Ap+1 T ap,
b() =1, by =1, bn+2 = bn+1 + bn.
In other words, a,, = F,.; is the (n + 2)nd Fibonacci number and b,, = F,,; is the (n + 1)st

Fibonacci number. The recurrence theorem furthermore implies that the Fibonacci numbers satisfy
the identity
1
FowoFy — Fpi1 P = (_1)n+ .

This identity is known as Cassini’s identity.
Furthermore, we can compute the exact value of the continued fraction ¢ := [1,1,...]. Notice

that
[1,1,...] =1+ ! 1+1
e=111,...]= _— = —.
[1,1,...] @

By rewriting this equation, we see that ¢> = ¢ + 1. The quadratic forumal now gives us that

_1+45
p=—

This number is known as the golden ratio. The continued fraction [1, 1, . ..] shows that the conver-

gents
F n+l

Fy
determine increasingly accurate approximations of the golden ratio.

6.4 Farey’s Series of Fractions

The geologist John Farey Sr. observed in a letter to the British periodical The Philosophical Magazine
and Journal [Far1816] that for any three consecutive fractions %, £, and % in the series ¥, we must

b1
have
s a+c

¢ b+d

Definition 6.4.1. The mediant of two reduced integer fractions  and £ is the integer fraction

a C a+c

b d b+d

We stress that this definition of the mediant makes essential use of the assumption that the input
integer fractions are in reduced form. If not, the value of the mediant could be skewed by common
factors.
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We can think of the mediant of two reduced integer fractions as the weighted average, where

the weights are assigned according to the ratio of their denominators:

a ¢ b a d c

b 'd b+db btrdd

Proposition 6.4.2. The mediant satisfies the following laws:

XVy=yvux,
XVx=x,
AV Ay =AxVy).

Furthermore, we have
x<xVy<y and X<xVy<y

if x < yorx <Yy, respectively. However, the mediant is nonunital and nonassociative, meaning that
there does not exist an element e such that x V e = x and there are integer fractions x, y, and z such

that (x Vy)Vz=xV (yV 2).

C

Proof. To prove the interchange law, consider the integer fractions %, 5> %, and %. Then we calculate

(EVE)V Evg_a+cve+g
b d f h] b+d f+h

Theorem 6.4.3. Consider two reduced fractions 3 < 5 such that

bc—ad = 1.

Then there is a unique Farey fraction of order b + d strictly between 7 and 5. the mediant

a+b
c+d’

Theorem 6.4.4. Consider two reduced fractions ; < 5 and set

k :=bc —ad.

Then there are exactly k Farey fractions of order < b + d strictly between § and .

6.5 A Structural Definition of the Rational Numbers

Definition 6.5.1. Consider a set Q equipped with a binary relation ¢,r +— (g ~ r)

structure on the pair (Q, ~) consist of:

. A Farey
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Figure 6.2: The Farey fractions with their adjacency relation

(1) amapi:Z — Q,
(ii) a partial binary operation
m:{(x,y)€Q[x~y}—>0
called the mediant,
such that
(i) for any integer a, the relation i(a) ~ i(a + 1) holds,
(ii) for any two elements x, y € Q such that x ~ y holds, the relations
x ~m(x,y) and m(x,y) ~y

hold.

Definition 6.5.2. The set Q equipped with the adjacency relation ~ and a Farey structure (i,m) is a
set of rational numbers if for every set Q’ with an adjacency relation ~ and Farey structure (i, m’),
there is a unique map f : Q — Q' such that x ~ y implies f(x) ~ f(y), such that

f(i(a)) =i'(a)
f(m(x,y)) =m'(f(x), f(y)).
The set Q is specified to be a set of rational numbers in this sense.
Example 6.5.3. We can use the specification of Q as a universal Farey structure to define a map
[f:Q—-X

into any set X equipped with a map i : Z — X and a binary operation m : X X X — X. Indeed,
in order to do so we define the relation x ~ y on X to always hold. This can be used to define the
numerator and the denominator of any rational number:

num(i(a)) := a, denom(i(a)) :=1,

num(m(x,y)) := num(x) + num(y), denom(m(x, y)) := denom(x) + denom(y).
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Thus, any rational number g determines an integer fraction 7.
Conversely, we can ask whether any reduced integer fraction ; uniquely determines a rational
number. To see this,
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Exercises

Routine-Building Exercises

6.1

6.2
6.3

6.4

6.5

6.6

6.7

6.8

For every integer a, show that there are infinitely many pairs of rational numbers x and y
satisfying the equation

x* -y =a.

Find all the integers of the form x + %, where x is a rational number.

Prove that
Z": 1 _n
= k(k+1) n+1
Prove that .
1 1
1(-3)-
k=2 n
Prove that

. ( . ) _n+l
2 - .
il k 2n
Consider a positive integer n = 3k + 2. Show that there are positive integers a, b, and ¢ such

that
4 1 1 1

n a b c

This is a special case of the famous Erd§s—Straus conjecture, which asserts that this equation
has a solution in the positive integers for all n > 0.
Consider four integers a, b, ¢, and d. Prove that the following are equivalent:

(i) The integers cx + a and dx + b are relatively prime for every x.

(ii) For any nonnegative divisor 7 of A := ad — bc such that gcd(c,t) | a and ged(d, t) | b,
we have t = 1.

Conclude that if ad — bc = +1, then the integer fraction

cx+a
dx+ b

is reduced for any integer x.
Consider the binary operation D on the reduced integer fractions, defined by

D(%, 2) :=|bc — ad|.
Show that D satisfies the axioms of a metric:

() D is positive definite: D(7,5) = 0if and only if § = 7.



EXERCISES

(i1) D is symmetric: D(%, %) = D(g, %)_
(iii) D satisfies the triangle inequality:

of35) <]

ac
b’ d

)+

o

c e

7

)
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Chapter 7
Pythagorean Triples

Pythagorean triples have been studied since antiquity. While this topic is very accessible, many
aspects of the theory Pythagorean triples are natural entry points for more advanced concepts in
number theory. First of all, the very definition of Pythagorean triples connects a geometric idea
with a number-theoretic concept. Euclid’s parametrization of the Pythagorean triples provides a
complete description of the exact nature of Pythagorean triples. We will prove that there is an
equivalence between Pythagorean triples and rational points on the circle, thus connecting the
integer solutions to the diophantine equation
a>+b*=¢?

with the rational points on an algebraic curve, a topic which is important in more advanced branches
of number theory. We will also show that Pythagorean triples can be equivalently described
as arithmetic triples of squares. This is an elementary example of the concept of equivalence
of quadratic forms. Moreover, the correspondence between Pythagorean triples and arithmetic
triples of squares leads us to an important open problem, which we will describe in more detail in
Section 8.5: the congruent number problem.

7.1 The Pythagorean Theorem

Recall that a right triangle is a triangle in which one of the angles is a right angle; that is, it is exactly
90°. The Pythagorean Theorem relates the lengths of the sides of a right triangle to the length of
its hypotenuse. There are many ways to prove this theorem. We will present the Chinese proof,
Euclid’s proof, and the proof of Ne’Kiya Jackson and Calcea Johnson, who made headlines in 2023
as high school students with their remarkable discovery of a trigonometric proof [Gua2023].

Theorem 7.1.1 (Pythagorean Theorem). Consider a right triangle with side lengths a and b, and a
hypotenuse of length c. Then

a’ + b* = 2.

101
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The Chinese proof. Consider a square with side lengths a + b, and include four right triangles with
side lengths a and b in the square, so that their right angles coincide with the four right angles of
the square.

a b

The area of the square is (a + b)2. On the other hand, the area of each triangle is ab/2. Combined
with the area of the inner square, whose sides are the hypotenuses of the four triangles, we obtain
that

b
(a + b)? :cz+4% = ¢? + 2ab.
Since (a + b)? = a® + 2ab + b?, we find that a® + b = 2. o

Euclid’s proof. Consider aright triangle AC B with hypotenuse A B, and draw a line from C through
AB at aright angle. The intersection point is called M.

C

Let x be the length of the line segment AM, and let y be the length of the line segment BM, so
that x + y = ¢. The line CM divides the triangle ACB into two triangles CM A and CM B, both of
which are similar to the original triangle ACB. Thus, the ratio a : ¢ is the same as the ratio y : a,
and the ratio b : c is the same as the ratio x : b. This gives us the equalities

a’ = cy and b* = cx.

Since x + y = ¢, we find that a® + b? = ¢2. o

Our third proof and final proof in this section, which is due to Ne’Kiya Jackson and Calcea
Johnson, is remarkable because it makes essential use of trigonometric functions sine and cosine
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and the addition law, which can be derived trigonometrically, rather than on calculations involving
areas of shapes. Besides its use of trigonometry, it is also remarkable because Ne’Kiya Jackson
and Calcea Johnson were still in high school when they found their proof, and it stands out for its
inventive creativity.

Recall that the sine and cosine functions are defined

to be the lengths of the vertical and horizontal sides of B

a right triangle, as indicated in the diagram on the side.

This means that if ACB is a right triangle with side BC of 1

length a, side AC of length b, hypotenuse AB of length sin(6)

¢, and angle 6 := £/CAB, then we have 9

A cos(6) C

sin(0) = 4 and cos(0) = é
c c

In the proof of the Pythagorean Theorem, we will make use of the addition formulas for sine and
cosine:

sin(6 + ¢) = sin(0) cos(¢) + cos(h) sin(¢p)
cos(6 + ¢) = sin(0) sin(¢) — cos() cos().

In particular, sin(26) = 2sin(6) cos(6), and cos(26) = sin’(6) — cos?(#). These laws can be
derived geometrically if 8 + ¢ is an acute angle; that is, if it is strictly less than 90°.

The Jackson—Johnson proof [JJ2024]. Consider a right triangle ACB with the right angle at C,
and label the sides a = BC, b = AC, and ¢ = AB so c is the hypotenuse.
In the special case where ACB is isosceles, meaning that a = b, the hypotenuse is the diagonal
of an a-by-a square, which gives us that ¢> = 2a?. Hence, we may assume that AC B is nonisosceles.
Without loss of generality, we will assume that a < b, so that BC is the shorter side. We reflect
the triangle along the longer side AC, as indicated in the diagram below:

B a4 C a4 F

Observe that the angle 6 := Z/BAC is strictly less than 45°, so that the angle 26 = Z/BAB’ is still
an acute angle.

Using this combined triangle, we draw a line from B perpendicular to the line AB, and we
extend the line AB’ until they meet in an intersection point, which we call D. This construction
yields a new right triangle ABD with the right angle at B, as in Figure 7.1.
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E H

G 'p

Figure 7.1: The recursive subdivision of the triangle BDB’.

We will now subdivide the triangle BD B’ by first dropping a line down from B’ at a right angle
from the line BB’, creating a new right triangle BE B’. Since this triangle also has an angle 6, it is
similar to the original triangle ACB. Its sides have lengths 2a and 2a?/b.

We continue subdividing the triangle BD B’ into ever smaller right triangles, as indicated in the
figure. The successive triangles in this sequence are all right triangles with an angle 6, so they are
all similar. Corresponding sides in these successive triangles have a ratio of a/b. The hypotenuses
of these triangles therefore have length i

a
Zc(b)

This allows us to calculate the length of the side B’D via the formula for the geometric series, which
we proved in Theorem 1.5.3:

= = 2¢ (1)2 2ca

BDI - 2e (g)2k+2:2c (E)Z (E)Zk: b _ .

IB°D] kZ:;) b b kZ:;) b 1_(%)2 b? — a?
Now we can find two expressions for the length of the line AD. First, it consists of the lines AB’ and
B’D, so it is of length ¢ + |B’D|, which we calculated above. On the other hand, by trigonometry
we have that ¢/|AD| = cos(26), which gives us that |[AD| = ¢/cos(26). Since both expressions
give the length of the line AD, both involving a factor of ¢ which we can factor out, we obtain the
following equation:

22 1
b2 —a?  cos(20)

Furthermore, the addition formula for cosines gives us that cos(26) = sin?(6) — cos?(6). Since
sin(0) = % and cos(#) = ¢, we find that

1+

2a? c?
1+ = .
P2 a2 bp2—g2
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Figure 7.2: The Babylonian tablet Plimpton 322, listing Pythagorean triples.

Rearranging this equation gives us that (b? — a?) + 2a” = 2, which yields

a’ + b* = . O

7.2 Euclid’s Parametrization of the Pythagorean Triples

Our goal in this section is to describe all the solutions of the quadratic Diophantine equation
a’+b*=c?,

where c is a nonzero integer. By the Pythagorean Theorem, any such triple (a, b, ¢) describes
the lengths of the sides and hypotenuse of a right triangle. Such a triple is therefore called a
Pythagorean triple. Notice that if (a, b, ¢) is a Pythagorean triple, then so is (ka, kb, kc), and their
corresponding triangles are of the same shape. Such Pythagorean triples are therefore called similar,
and we are interested in the Pythagorean triples up to similarity.

The trivial solutions are (0,1,1) and (1,0,1). The
simplest nontrivial solution is the famous equation

2 2 _ 2 5
3+ 4 =5"°, 3

The triangle with side lengths 3 and 4 and a hy-
potenuse of length 5 is sometimes called the Egyptian
triangle, since it is believed that the ancient Egyptians
used this triangle for practical applications. Some further Pythagorean triples include

(5,12,13),  (21,20,29), and  (15,8,17).

4
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The oldest surviving table of Pythagorean triples was created by the Babylonians, in what is now
known as the tablet Plimpton 322. This clay tablet, which is estimated to date from 1800 BCE,
contains a mathematical table written in cuneiform script, where each row describes a Pythagorean
triple in sexagesimal notation; that is, in base 60.

Fibonacci devised in his book Liber Quadratorum (The Book of Squares) [FS1987] a clever way
to quickly show that there are infinitely many Pythagorean triples. If an odd square a? is the nth
odd number, so that a> = 2n + 1, then by Exercise 1.1 there are positive integers b and ¢ such that

n—1 n
b2 = Z(Zi +1), and 2= Z(zi +1)
i=0 i=0

For this choice of a, b, and ¢, we have

a’ + b* = 2.

Proposition 7.2.1. There are infinitely many Pythagorean triples (a, b, c) such that c = b + 1.

Note that while Fibonacci used the sum of odd numbers to find a triple (a, b, ¢) of integers such
that a® + b? = ¢?, these Fibonacci triples follow the pattern

b+ 1)+b>=(b+1)>.

Here we immediately see that if 25 + 1 is a square number @, and indeed any odd square is of this
form, then we obtain a Pythagorean triple of the form (a, b, b + 1). Rewriting a = 2k + 1, we see
that Fibonacci’s Pythagorean triples are of the form

(2k + 1, 2k* + 2k, 2k*> + 2k + 1).

The Pythagorean triples (a, b, ¢) generated by Fibonacci’s method always satisfy ¢ = b + 1.
However, we have already seen that (21, 20, 29) is a Pythagorean triple that is not of this form.
Therefore we see that, even though Fibonacci’s method can be used to see that there are infinitely
many Pythagorean triples, it does not generate all of them.

In the remainder of this section we will derive the classic formula that describes all the
Pythagorean triples. The method leading to this formula was described by Euclid in Book X,
Proposition 29 and Book 6, Proposition 21 of the Elements.

Definition 7.2.2. A primitive Pythagorean triple is a triple (a, b, ¢) satisfying
a’+b*=¢?

such that ged(a, b) = 1.

Example 7.2.3. All the Pythagorean triples generated by Fibonacci’s method are primitive, since
gcd(2b +1,b) = 1.
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Lemma 7.2.4. For any Pythagorean triple (a, b, c¢) there is a unique primitive Pythagorean triple
(a’,b’, ") consisting of positive integers for which there is an integer k such that (ka’, kb’, kc’) =
(a,b,c).

Proof. Given a Pythagorean triple (a, b, ¢), let k := gcd(a, b). Since k | a and k | b, it follows
from the equation a® + b* = ¢? that k | ¢. Thus, we define

a =alk, b’ :=blk, and ¢ =c/k.

Then @’ and b’ are relatively prime, and we have

a’+b* ? ”

” 72 _
a“+b“= k2 —ﬁ

The triple (a’, b’, ¢’) is therefore a primitive Pythagorean triple such that
(ka’,kb',kc") = (a, b, c).

For uniqueness, suppose that (a”, b”, c¢”) is an other such primitive Pythagorean triple, satisfying
(la”,1b",1c") = (a, b, c). Since gcd(a”, b”) = 1, it follows that

k = gcd(a,b) = ged(la”,1b") =1

Furthermore, since at least one of a or b is nonzero, it follows both k and [ are nonzero. Thus we
get a’ = a” from the equation ka’ = ka”, and we get b’ = b” from the equation kb’ = kb”. We
conclude that (a’,b’,¢") = (a”,b”,c"). O

By the previous lemma we can restrict our attention to primitive Pythagorean triples. Next, we
do a parity analysis of the components of a primitive Pythagorean triple to show that exactly one
of the components of (a, b, ¢) in a Pythagorean triple is divisible by 4. In Exercise 7.3 we make
the similar claims that exactly one of the components of a Pythagorean triple is divisible by 3, and
exactly one divisible by 5.

Lemma 7.2.5. Consider a primitive Pythagorean triple (a, b, c). Then c is odd, exactly one of a
and b is divisible by 4, and the other is odd.

Proof. Since (a, b, c) is a primitive Pythagorean triple, it is clearly impossible for both a and b to
be even. It is also impossible for both of them to be odd, since in that case ¢Z would be of the form
4k + 2, which is impossible since every square is of the form 4k or 4k + 1. Thus, one of a and b is
even and the other is odd. This gives us that ¢? is odd, which is onlb possible if ¢ is odd.

It remains to show that the even component among a and b is in fact divisible by 4. To this
end, recall that every square is of the form 8k, 8k + 1, or 8k + 4. Since a® + b? = ¢? is of the form
8k + 1, it is impossible for one of the squares a® or b to be of the form 8k + 4. It follows that the
even square is of the form 8k. If a? is divisible by 8, then clearly a is divisible by 4, and likewise if
b? is divisible by 8 then b is divisible by 4. O
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By the previous lemma we may assume, without loss of generality, that in a primitive Pythagorean
triple (a, b, c¢), the integer a is odd and the integer b is even. Under this assumption, we can show
that both ¢ — a and ¢ + a are twice a square, which leads us directly to Euclid’s parametrization of
the Pythagorean triples.

Lemma 7.2.6. Consider a primitive Pythagorean triple (a, b, c¢) in which b is even, so that a is
odd. Then there are two relatively prime positive integers s < t of opposite parity, such that

c—a=2s and c+a =2
Proof. By the assumption that b is even, we can write b = 2u. Then we have
(c—a)(c+a)=c*—da*>=b> =4’

Any common divisor d of ¢ —a and ¢ + a must divide their sum 2¢ and their difference 2a. However,
since a and c are relatively prime, it follows that d | 2. On the other hand, since both a and c are
odd it follows that ¢ + a is even, which implies that d = 2. Thus we see that

(c - a) (c + a) )
=Uu
2 2
is a decomposition of a square into relatively prime factors. This implies that each factor is itself a
square. More precisely, there are two relatively prime positive integers s < ¢ such that

c—a ’ c+a

> s an >
Furthermore, observe that since ¢ and a are both odd, it follows that one of ¢ — a and ¢ + a is
divisible by 4 and the other is of the form 4k + 2. This implies that one of s and ¢ is even and the

other is odd. O

Theorem 7.2.7 (Euclid’s Parametrization of the Pythagorean Triples). For every primitive Pythagorean
triple (a, b, ¢) with b even, we can uniquely determine two relatively prime positive integers s < t
of opposite parity such that

a :tz—sz, b = 2st, and c =1 +s°
Proof. To prove that two relatively prime integers 0 < s < ¢ exist as specified, we will use s and ¢

as determined in Lemma 7.2.6, where

c—a 5 c+a 5
=s°, and = t°.
2 2

A simple calculation shows that 2 — 5% = a,and t* + 52 = ¢. To see that b = 2st, it suffices to show

that b2 = 4s%>. This follows from the following short calculation:

451> = (c —a)(c + a) = ¢* —a® = b°.
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In order to show that s and ¢ are uniquely determined as specified, consider additionally two
relatively prime positive integers u < v of opposite parity such that

a :v2—u2, b =2uv, and c=v?+u’.

then ¢ — a = 2u? and ¢ + a = 2v2, while at the same time we have ¢ — a = 2s% and ¢ + a = 2¢%.
This implies s> = u? and > = v2. Since all the numbers involved are positive, we obtain that s = u
andt = v. O

7.3 Rational Points on the Unit Circle

The unit circle consists of all points (x, y) that are a unit distance from the origin. In other words, a
point (x, y) in the plane with real number coordinates lies on the unit circle if it satisfies the equation

x2+y2:1.

When both coordinates x and y are rational numbers, we say that (x, y) is a rational point on the
unit circle. Primitive Pythagorean triples can be used to obtain such rational points on the unit
circle. Every primitive Pythagorean triple (a, ¢, b) determines the point

ab
ccl’

which satisfies (£)? + (2)> = (a® + b*)/c*> = 1. Thus we see that if (a, b, ¢) is a primitive
Pythagorean triple, then (£, %) is a rational point on the unit circle. We will show that every rational
point on the unit circle arises in this way.

In order to prove that all rational points on the unit circle are determined by primitive Pythagorean
triples, we need a systematic way of studying the rational points on the unit circle. A standard way
to classify all (rational) points on the unit circle is to parametrize them using a single parameter.
We will use a parametrization called the stereographic projection. This starts with a single rational
point on the unit circle, in our case we start with the point (-1, 0). Then we consider all the lines
through this point with a rational slope. Surely, if (x, y) is a rational point on the circle, then the
line through (-1, 0) and (x, y) will have a rational slope. The question that thus arises is: Does
every line through (—1, 0) with a rational slope intersect the unit circle in a rational point?

At first consideration, it might not be so clear that this should indeed be the case. The key
insights are obtained through Vieta’s formulas for the roots of a (quadratic) polynomial, named
after the 16th century French mathematician Francois Viete. He was one of the first to use letters as
parameters in his study of algebraic equations. Vieta’s formulas are the essential ingredient in a
problem-solving technique called Vieta jumping, which is the topic of Section 8.6.

Theorem 7.3.1 (Vieta’s Formulas for the Roots of a Quadratic Polynomial). Consider a polynomial
of the form t> — Bt + C and suppose that r is a root of this polynomial. Then the other root s satisfies
the relations

r+s=B and rs=C.
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1-m®> 2m

| (1+m2’ 1+m2) 7

/ y=m(x+1)
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Figure 7.3: A point (x, y) on the unit circle is rational if and only if the line through (-1, 0) and (x, y) has a
rational slope.

Proof. The two roots of a quadratic polynomial f(¢) = t> — Bt + C are r and s if and only if we
can write f(¢) in the form

f()=@=r)(-ys).
However, if this equation holds, then we find that
= (r+s)t+rs=1t>—Bt+C.
The asserted relations now follow by comparing coeflicients. O

A corollary of the previous theorem is that if B and C are rational numbers and r is a rational
root of the polynomial t*> — Bt + C, then the other root s is also rational.

Theorem 7.3.2. Consider the line given by the equation y = m(x + 1), which has slope m and
passes through the point (—1,0). This line intersects the unit circle at the point

1-m?> 2m

1+m2 1+m2)’
Consequently, the line y = m(x + 1) intersects the unit circle at a rational point other than (—1,0)
if and only if the slope m is rational.
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Proof. In order to find the two points (x, y) on the intersection of the line y = m(x + 1) and the
unit circle, we must solve the equation

X2 +mP(x+ 1) =1.

By rearranging, we find that it is equivalent to solve the equation

2 m? -1

»  2m
X"+ X +
1 + m? 1 + m?
Since we already know that there is one root at —1, we can find the other root by Vieta’s formulas

given in Theorem 7.3.1: The other intersection point is at (x, y), where

1 —m? 2m

T 1+m? and Y ST .
For the final claim, it is clear that if m € Q, then both x and y are rational numbers. Conversely,

if (x,y) is a rational point on the unit circle distinct from (—1,0), then we have —1 < x < 1 and

m = %, which is a quotient of rational numbers and thus rational.

Theorem 7.3.3. The map

X

(a,b,c) — (ﬁ’ é)

c c

from primitive Pythagorean triples (a, b, ¢), where a, b € Z are allowed to be negative and ¢ > 0,
to the rational points on the unit circle is a bijection.

Proof. Since we require ¢ > 0, the assumption that gcd(a, b, ¢) = 1 implies that if (%, % = (%,/, ’;—,'),
then we must have ¢ = ¢’ and consequently a = @’ and b = b’, so it follows immediately that the
map (a,b,c) — (%, %) is injective. Therefore, it it suffices to show that it is surjective.

Consider a rational point (x, y) on the unit circle. If (x,y) = (-1, 0), then the unique primitive
Pythagorean triple corresponding to (x, y) is (—1,0, 1). It remains to show that if (x,y) # (—1,0),
then there exists a primitive Pythagorean triple (a, b, ¢) such thatx = ¢ and y = %.

By the previous theorem, it follows that (x, y) is of the form

1-m?> 2m

L+m? 1+m?)’
where m is a rational number. Writing m as the integer fraction 2, which we assume to be in lowest
terms, we have

B 12— s? _ 2st

= m and y = m

The triple (a, b, c) given by a := t* — 5%, b := 2st, and ¢ := t> + s describes a Pythagorean triple,
since the equation

X

(2 = 522 + (2s1) = (* + 5°)?
holds. Note that this Pythagorean triple is not necessarily primitive. For instance, when both s and
t are odd, then a, b, and c are all divisible by 2. Nevertheless, by reducing this triple to a primitive

triple if necessary, we obtain a primitive Pythagorean triple whose corresponding point on the unit
circle is (x, y). O
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7.4 The Tree of Primitive Pythagorean Triples

In 1934, the Swedish senior high school teacher B. Berggren discovered that the primitive Pythagorean
triples can naturally be given the structure of a ternary tree [Ber1934]. More precisely, he discov-
ered that all primitive Pythagorean triples can be obtained by iterated application of three linear
operations, starting with the triple (3, 4, 5). The three linear operations found by Berggren are the
three matrices

I -2 2 1 2 2 -1 2 2
A=(2 -1 2|, B=2 1 2|, and C=|(-2 1 2.
2 -2 3 2 23 -2 2 3

To rediscover Berggren’s matrices and his ternary tree, we will use the technique of Vieta
jumping, which we have already used in the previous section to establish a correspondence between
primitive Pythagorean triples and rational points on the unit circle. We begin with a generalization
of Theorem 7.3.2, where we established the stereographic projection of the (rational) points on the
unit circle.

Theorem 7.4.1 (Vieta Jumping for Rational Points on the Unit Circle). Consider a rational point
(x,y) on the unit circle. For any point (u,v) with rational coordinates such that u # x, consider
the line through (u,v) and (x, y), whose slope is

y—v
m = .
X—U

This line intersects the unit circle in a second rational point (x’,y"). Moreover, x and x’ satisfy the

relation
_ (mu - v)2 -1

1 +m?

’
XX

Proof. First, we parametrize the line through (u, v) and (x, y) as a function of ¢ given by

s(t) :==m(t —u)+v,

where the slope m is defined by m := g In order to find the intersection points of this line with the

unit circle, we have to solve the equation 7% + s(¢)> = 1. We can simplify this equation as follows:

0=+ +m@-u)’-1
=2 +v2 + 2vm(t — u) + m>(¢* = 2ut + u?) - 1

= (1 +m®® + Qvm = 2um®)t + (mu —v)* - 1.
Dividing through by 1 + m?, we see that x and x’ are the roots of the quadratic equation

2vm — 2um? -v)? -1
2, 2vm — 2um (mu —v) 0.

1 +m? 1 + m?
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Figure 7.4: For any rational point (x, y) on the unit circle apart from (0, +1) and (%1, 0), draw a straight line
through it from the outer corner of its quadrant to find a new rational point (x’, y’) on the unit circle. The
common denominator of the fractions x” and y’, when brought to lowest terms, is strictly smaller than that of
x and y, so that this process eventually terminates at (0, 1) or (£1, 0).

We have thus reached a quadratic equation of the form > + Bt + C, which has by assumption
one rational solution at ¢ = x. Thus we obtain from Theorem 7.3.1 a second rational solution x’
satisfying the relation

’

(mu —v)?> -1
xx' = —

1 +m?

By making a suitable choice for the rational point (u, v), the previous theorem can be used to
find, for each rational point (x, y) on the unit circle corresponding to a primitive Pythagorean triple
(a, b, c) with 0 < ¢, which we assume to be nontrivial in the sense that ab # 0, a new rational
point (x”, y) on the unit circle corresponding to a primitive Pythagorean triple (a’, b’, ¢’) satisfying
0 < ¢’ < c. Intuitively, we will find a procedure to step from a primitive Pythagorean triple to a
new Pythagorean triple with a smaller hypotenuse.

The suitable choice of (u, v) that we alluded to previously is given by

u ;= sgn(a) and v :=sgn(b).
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In other words, the point (u, v) is the nearest corner of the 2-by-2 square centered at the origin to the
rational point (x, y) on the unit circle. The procedure (a, b, c) — (a’, b’, ¢’) of stepping from one
Pythagorean triple to a new one with a smaller hypotenuse is illustrated in the following example,
which is accompanied by Figure 7.4.

Example 7.4.2. Consider the Pythagorean triple (a, b, ¢) := (117,44, 125), which corresponds to

the rational point (x, y) := (%, %) on the unit circle. Since both a and b are positive, we have

u = v = 1, and the new point (x’, y’) on the line through (u, v) and (x, y) and the unit circle satisfies

, (m-1%*-1
XX = —“@ 7 —
1 +m?
where m = )yc%i Sincex = £ and y = % we can rearrange the previous Vieta relation to obtain that

’

(b-—a)’>—(a-c)> 732-82
xx" = =

(a-—c)2+(b—-c)> 82+3812

From these calculations, we obtain that x” = % and y’ = _5—238, which corresponds to the primitive

Pythagorean triple (45, —28, 53), which indeed has a hypotenuse satisfying 53 < 125.

Recall that for each rational point (x, y) on the unit circle, we can write x = £ and y = % in

lowest terms with identical denominators, which we always take to be positive. This observation
is a direct consequence of Theorem 7.3.3. Thus, we can unambiguously refer to the common
denominator of any rational point on the unit circle. We also recall that for any two positive integers
a and b, we have

2ab < a® + b*. (*)

This inequality, which is an instance of the AM—GM inequality, follows from the observation that
(a —b)? =a?-2ab + b* > 0.

Theorem 7.4.3 (Pythagorean Descent). Consider a primitive Pythagorean triple (a, b, ¢) with
¢ > 1, corresponding to the rational point (x,y) on the unit circle given by
a b

and y=—.
c

X =

Furthermore, consider one of the corner points (u,v) = (x1, 1) of the 2-by-2 square centered
at the origin. Then the second intersection point (x’,y’) of the line through (u,v) and (x, y) and
the unit circle, as determined by Theorem 7.4.1, corresponds to the primitive Pythagorean triple
(a’,b’,c") given by

a’ -1 2uv 2u\/a
bl=-2uv -1 2||b
c’ 2u 2v 3 /\c

Moreover, when u = sgn(x) and v = sgn(y), then we have 0 < ¢’ < c.
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Proof. The rational point (x’, y’) obtained from Theorem 7.4.1 satisfies the relation

’

_ (mu—v)2—1

xx
1 +m?
where m := 2= is the slope of the line through (u,v) and (x, y). Given thatx = ¢ and y = 2, we
see that
b—-vc
m= .
a-uc

We use this to rewrite Vieta’s relation between x and x’ as follows:

_ (bu— av)? — (a — uc)?
" (a—uc)2+ (b-ve)?’

’
XX

2

Given that u? = v? = 1 and a? + b? = ¢?, we compute this quantity as follows:

,  (bu-— av)? — (a — uc)? 3 b? — c? = 2uvab + 2uac a—a —2uvb + 2uc

T (@a-uc)+(b-ve)?  —2uac-2vbc+at+b:+2c2 ¢ —2ua—-2vb +3c’

XX

Thus, we obtain the following expressions for a” and ¢’, so that x” = %/

a =—-a—-2uvb +2uc,
¢ = —2ua - 2vb + 3c.

Now we can verify that b" = —2uva — b + 2vc by checking that, taking this as our definition for ’,

we have a”? + b’ = ¢’? and "

a —a

=m.

Both of these identities are verified by a quick calculation, which we leave to the reader. It follows
that, given a primitive Pythagorean triple (a, b, ¢), the Pythagorean triple (a’, b’, ¢’) is determined
by the matrix multiplication

a’ -1 2uv 2u\/a
bl=1-2uv -1 2||b
c’ 2u 2v 3 /\c

If M is the matrix in the above equation, it is immediate from the construction of M that M 2o,
the identity matrix. Indeed, jumping from (x, y) to (x’,y’) using the point («,v), and jumping
again from (x’, y") using the same point (u, v) reverses the process and lands us back at (x, y).
This implies that any common divisors of (a’, b’, ¢’) are also common divisors of (a, b, ¢). Since
(a, b, c) is primitive, it follows that (a’, b’, ¢’) is also primitive.

The final claim is that ¢’ := 3¢ — 2|a| — 2|b]| satisfies 0 < ¢’ < c¢. By rearranging the terms, we
see that these strict inequalities are equivalent to the strict inequalities

2¢ < 2la| +2|b| < 3c.
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Figure 7.5: A forest.

We can prove these strict inequalities by proving that they hold for the squares:
4¢? < 4(la| + |b])? < 92,

To see this, we note that (|a| + |b|)> = a® + 2|a||b| + b? = ¢ + 2|a||b|. This immediately implies
that ¢> < (|a| + |b|)?. Furthermore, we have the inequality 2|a||b| < a® + b* = ¢? by the inequality
stated in Equation (x). Thus we obtain that

4¢? < 4(|a| + |b))? = 4c* + 8lal|b| < 4c? + 4¢? < 9¢. O

The Pythagorean Descent Theorem can be used to determine a ternary tree structure on the
set of primitive Pythagorean triples. We will define trees to be forests consisting of a single tree.
Mathematically, a forest is defined as a set F equipped with a height function h : F — N, and for
each height n a parent function

p:{xeF|h(x)=n+1} > {x e F| h(x) =n}.

Given a forest F, an element x € F is called a node; a node x of height 0 is called a root; the node
p(x) is called the parent of x; and for any node y, all the nodes x whose parent is y are called the
children of y. A forest is said to be a tree if it contains exactly one root. We note that a forest can
contain nodes of arbitrary height; that is, mathematical trees can be infinitely tall. In Figure 7.5 we
have drawn an example of a forest.

Example 7.4.4 (The forest of rational points on the unit circle). In Pythagorean Descent Theorem,
we showed that for each rational point on the unit circle other than (+1,0) or (0, +1), we can jump
to another rational point whose positive common denominator is strictly smaller than that of the
original point. If the new point is not one of the points (+1,0) or (0, +1), we can jump again to yet
another rational point whose common denominator is still smaller. Starting at (xg, yo) := (x, ),
repeating this process results in a sequence of rational points (x,, y,) on the unit circle, whose
common denominators strictly decrease as the sequence progresses. Since a sequence of positive
integers cannot be infinitely long, we see that this sequence must terminate. That is, in a finite
number of jumps we must reach one of the points (+1,0) or (0, +1).

For any rational point (x, y) on the unit circle, let (x, y) be the least number of jumps required
to reach one of the points (£1,0) or (0, £1). Furthermore, if (x, y) is of height n + 1, so that it is
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Figure 7.6: Each rational point on the unit circle other than (%1, 0) or (0, +1) is the target of a Vieta jump
from three rational points on the unit circle with larger common denominator, one for each quadrant other than
its own. Here, the purple, green, and orange jumps are drawn exactly as in Figure 7.4. The point (%, _5—238) is
the target of three jumps, each drawn in blue. Since each rational point is the target of three Vieta jumps that
decrease the common denominator, we see that the rational points on the unit circle can be organized in a

forest consisting of four trees, where the four nodes at height 0 are the points (+1,0) and (0, +1).

neither (+1,0) nor (0, +1), let p(x, y) := (x’,y’) be the target of the jump from (x, y). This height
and parent function gives the set of rational points on the unit circle the structure of a forest with
four roots, the points (+1,0) and (0, +1). In Figure 7.6 we displayed one branching point in this
forest, along with the path to its root.

We observe that in this forest, each root (+1,0) or (0, +1) has two children. These are the eight
points (%3, i5—4 and (%‘, %3). Any rational point on the unit circle other than a root has exactly three
children, one in each quadrant other than its own.

We also observe that the forest of rational points on the unit circle possesses some important
symmetries. Each rotation by 90° and each reflection along the x-axis, the line y = x, the y-axis,
and the line y = —x maps rational points on the unit circle to rational points on the unit circle in
such a way that the height and parent functions are preserved. To see this, observe that each of
those symmetries reflects a point (x, y) on the unit circle to one of the points (+x, +y) or (xy, +x).

Example 7.4.5 (The tree of primitive Pythagorean triples). We will now use the forest of rational
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points on the unit circle to construct the tree of primitive Pythagorean triples, and derive Berggren’s
matrices.

The matrix we used in the Pythagorean Descent Theorem to jump from a primitive Pythagorean
triple (a, b, ¢) with 1 < ¢ to a new primitive Pythagorean triple (a’, b’, ¢’) was defined as

-1 2uv 2u
M,, =|-2uv -1 2v]|.
—2u 2v 3

When u := sgn(a) and v := sgn(b), then the new Pythagorean triple satisfies 0 < ¢’ < ¢. This
implies that for any of the three other choices of (u, v), the new Pythagorean triple satisfies ¢ < ¢’.

From now on, we will assume that (a, b, c) is a primitive Pythagorean triple in which all of a,
b, and c are positive integers, and furthermore b is even. To step upwards along the tree, we set
u = +1 and v = £1 so that at least one of u and v is —1. This results in a new Pythagorean triple
corresponding to a rational point on the unit circle in the quadrant of the point (u, v). To reflect this
rational point back to the quadrant with positive x- and y-cordinates, we compose the matrix M, ,,
with one further linear operation as follows:

u 0 0 -1 2uv 2u —-u -2v 2
0O v Ol|l2uv -1 2v|=|-2u -v 2
00 1/\-2u -2v 3 —2u -2v 3

Instantiating these matrices at (u,v) = (—1,1), (1,-1), and (—1,—1) gives the matrices that
Berggren discovered in 1934:

1 -2 2 1 2 2 -1 2 2
A=(2 -1 2|, B=|2 1 2], and C=(-21 2
2 =23 2 23 -2 23

By the Pythagorean Descent Theorem it follows that all primitive Pythagorean triples can be
obtained by iteratively applying the matrices A, B, and C given above. This tree is displayed in
Figure 7.7.



7.4. THE TREE OF PRIMITIVE PYTHAGOREAN TRIPLES

(7,24,25)

(5,12,13) ——— (55,48,73)

\
///////////////// (45,28, 53)
i
(39,80,89) —
\
P

\

(3,4,5) —— (21,20,29) —— (119, 120, 169)

/

\

I

(77,36,85) —

\ -
i

(33,56,65) —

\

I

\

(15,8,17) —— (65,72,97)

/

(35,12,37)

(9,40,41)
(105, 88, 137)
(91, 60, 109)
(105,208, 233)
(297,304, 425)
(187,84, 205)
(95,168, 193)
(207,224, 305)
(117,44, 125)
(57,176, 185)
(377,336, 505)
(299, 180, 349)
(217,456, 505)
(697,696, 985)
(459,220, 509)
(175,288, 337)
(319,360, 481)
(165,52, 173)
(51, 140, 149)
(275,252,373)
(209, 120, 241)
(115,252,277)
(403,396, 565)
(273,136, 305)
(85,132, 157)
(133, 156,205)
(63, 16, 65)

119

Figure 7.7: The tree of primitive Pythagorean triples. The edges that were drawn in green, orange, or blue in

Figure 7.6 have been drawn here in the same color.
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7.5 Squares in Arithmetic Progressions

The Euclidean parametrization of the Pythagorean triples
has some further applications, but in order to get there
we must make a short excursion to the city of Pisa in the
13th century, where Frederick II reigned as the Holy Ro-
man Emperor, and King of Sicily, Jerusalem, and Apulia.
When Leonardo Pisano, more commonly known as Fi-
bonacci, was summoned to the court of Frederick II, he
met with Master John of Palermo who challenged him
with mathematical problems.

One of the challenges of Master John is stated as fol-
lows: Find a rational number ¢ such that the numbers

g*-5 and  ¢*+5

are both squares of rational numbers. Fibonacci’s inves-
tigations into this problem would eventually lead him to
write his Liber Quadratorum [FS1987]. The Liber Quadratorum covers topics such as Pythagorean
triples, a method of generating infinitely many of them, and arithmetic progressions of squares.
There were no known remaining copies of the Liber Quadratorum until a 15th century copy was
rediscovered in the Biblioteca Ambrosiana in Milan, which was republished in print in 1857 by the
Italian historian and mathematician Baldassarre Boncompagni Ludovisi. Today, the work available
in an English translation by Laurence E. Sigler as The Book of Squares [FS1987].

Master John’s challenge is equivalently formulated as the question of finding four integers a, b,
¢, and ¢ such that

Figure 7.8: Leonardo Pisano.

b2 — a? = 5¢* and ¢ - b2 =5

Thus, we are looking for three squares a?, b?, and ¢? increasing in increments of 5¢2. Thus we see
that we can conveniently state the problem in terms of arithmetic triples of squares.

Definition 7.5.1. An arithmetic triple of squares is a triple (a?, b*, ¢?) consisting of integer squares
such that
b* —a*=c* - b?

This common increment is called the congruum and is denoted by A, p ., or simply A. An arithmetic
triple of squares (a2, b2, ¢?) is said to be primitive if gcd(a, b, ¢) = 1.

It follows immediately from the definition that if (az, b2, c2) is a primitive arithmetic triple of
squares, then a, b, and c are also pairwise relatively prime.

We are thus looking for an arithmetic triple of squares, with a congruum of the form A := 5¢%.
In Exercise 5.20 you were asked to show that the congruum A of an arithmetic triple of squares is
always divisible by 24, which Fibonacci also reported on in Liber Quadratorum. We conclude from
this observation that if A is of the form 5% then A must be a multiple of 2 - 3 - 5 - 24 = 720.
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Figure 7.9: The numbers in squares at the base of the grid are the numbers of the form 6m + 1, which
correspond exactly to all the numbers n such that n> — 1 is divisible by 24. If x and y are two numbers in
squares at the base of the grid, then the number & at the apex of the triangle spanned by x and y satisfies
y? — x? = k - 24. For each primitive arithmetic triple (x2, y2, z%) of squares, the apex of the triangle spanned
by x and y is marked in blue, and the apex of the triangle spanned by y and z is marked in orange.

The fact that the congruum in an arithmetic triple of squares is always a multiple of 24 implies
that primitive arithmetic triples of squares consist entirely of integers of the form (6m + 1)>. Any
such square exceeds a multiple of 24 by one. This significantly reduces the search space for
arithmetic triples of squares. If a,, is the nth positive integer of the form (6k + 1), then

Apel — an {n if n is odd,

d, =
" 24 n/2 if niseven.

In order to determine the number of units of 24 in the difference between two arbitrary numbers of
the form (6m + 1)?, we simply sum the numbers d,,: We define

m

i _ Qn+m+1 — Ap

Snm = dp+i = T
i=0

Alternatively, the numbers s, ,, are determined by the recursive rule s, = Sy+1m-1 + Snm—1 —
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Sn+1,m—2. The numbers s, ,, are displayed in Figure 7.9, from which we determine that:

52-12=7*-5? =124,

132 -7 = 17> - 132 =5.24,
172 =77 =232 - 177 =10-24,
252 - 17% = 31% - 257 =14 - 24,
292 — 12 =412 - 29? =35.24,
37% - 232 = 477 - 37? =35.24,
412 — 317 = 49% — 412 =30-24.

The solution to Master John’s problem to Fibonacci, which Fibonacci reported in Proposition 17 of
Liber Quadratorum, thus corresponds to the last listed arithmetic triple of squares, which gives

41\> (31\* _ (49)° 412_5

12 12) 12 12) 7
Arithmetic triples of squares are closely related to Pythagorean triples. Given an arithmetic
triple of squares (az, b2, cz), we can write b2 as a sum of two squares written in terms of a and c.
The crucial identity that leads to the construction of a Pythagorean triple using the integers a, b,

and c 1s
c? + a® = 2b°.

Using this identity, we see that

(c —a)? (c+a)2_02—2ac+a2+02+2ac+a2_c2+a2_b2
4 4 4 4 -2 T

Thus, if (a2, b2, ¢?) is an arithmetic progression of squares, then the integers

c—a c+a
= , = , and =b
SR A ¢

determine a Pythagorean triple (x, y, z). Conversely, if (x, y, z) is a Pythagorean triple, then we
define
a:=|y-x|, b:=z and c:=y+x,

so that (a2, b?, ¢?) is easily seen to be an arithmetic triple of squares. Here, we defined a to be the
distance between y and x in order to ensure that a is positive. The congruum of this arithmetic
triple is given by

22— (y —x)* = 2xy,

which is four times the area of the Pythagorean triangle described by the Pythagorean triple (x, y, z).
The operations thus described create the following correspondence between some of the most
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familiar arithmetic triples of squares and Pythagorean triples:
(1%,5%,7%) S (3,4,5),
(72,132,177 & (5,12,13),
(12,29%,41%) & (21,20,29),
(7%,17%,23%) & (15,8, 17).
The fact that these operations mapping arithmetic triples of squares to Pythagorean triples and back

are mutually inverse to each other is easily verified by a few quick computations, which we leave to
the reader. Thus, we have established:

Theorem 7.5.2. Arithmetic triples (a?, b%, c?) of squares are in bijective correspondence with
Pythagorean triples (x,y, z), so that primitive arithmetic triples of squares correspond to primitive
Pythagorean triples.

Proof. We only prove that (a2, b?, ¢?) is a primitive arithmetic triple of squares if and only if the
Pythagorean triple
c—a cta b)

—_
a
N|

1S primitive.

For the forward direction, assume that gcd(a, b, ¢) = 1. To see that (¢ —a)/2 and (¢ + a)/2
are relatively prime, it suffices to show that any common divisor d of ¢ — a and ¢ + a is a divisor
of 2. Indeed, if d is a common divisor of ¢ — a and ¢ + a, then it is also a common divisor of
2a = (c+a)—(c—a)and 2¢ = (¢ + a) + (¢ — a). Since a and c are relatively prime, it follows
that d is a divisor of 2.

Likewise, to show that (¢ —a)/2 and b are relatively prime, we note that since b is odd it suffices
to show that ¢ — a and b are relatively prime, which is only the case if (¢ — a)? and b? are relatively
prime. This follows from

(c —a)? = c* +a* - 2ac = 2b* - 2ac,

since any common divisor of (¢ — a)? and b? is also a common divisor of »? and 2ac, which are
relatively prime by assumption. The proof that (¢ + a)/2 and b are relatively prime is similar.
For the reverse direction, assume that

(5, 5. 0)

is a primitive Pythagorean triple, so that b is odd, and thus b, (¢ — a)/2, and (¢ + a)/2 are all
pairwise relatively prime. Then any common divisor d of a and c is also a common divisor of
(c —a)/2and (c + a)/2, so that a and ¢ are seen to be relatively prime.

We will prove that (x, y, z) is a primitive Pythagorean triple if and only if

(=222 (y+x)%)

is a primitive arithmetic triple of squares. By Euclid’s parametrization of Pythagorean triples, it
suffices to show that for any two O
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The previous theorem raises an interesting point. Since the primitive Pythagorean triples are
precisely described by Euclid’s parametrization, there must similarly be a parametrization of the
arithmetic triples of squares.

Corollary 7.5.3. For any primitive arithmetic triple of squares (a®, b, c?), we can uniquely deter-
mine two relatively prime positive integers s < t of opposite parity such that

2 2 2

a:2st—t2+s, b=t2+s, and c=2st+t>—s

with common difference d = 2st(t — 5)°.
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Exercises

Starter Exercises

7.1 Bhaskara’s proof of the Pythagorean Theorem. Use the following diagram to give a proof of
the Pythagorean Theorem:

Routine-Building Exercises

7.2 The Brahmagupta—Fibonacci identity. Show that
(@ + b (? + d°) = (ac + bd)* + (ad T bc)>.

Conclude that if m and n are two integers that can be written as the sum of two squares, then
their product mn can also be written as the sum of two squares.
7.3 Consider a primitive Pythagorean triple (x, y, z).

(a) Prove that exactly one of x, y, and z is divisible by 3.

(b) Prove that exactly one of x, y, and z is divisible by 5.

(c) Find all Pythagorean triples (x, y, z) in which x = 30 or y = 30. Can any of them be
primitive?

(d) Find all relatively prime positive integers x and z such that

x2 +60% = Zz,
showing that the components divisible by 3, 4, or 5 might all coincide.

7.4 Find three distinct triangular numbers in an arithmetic progression.

7.5 Find three distinct tetrahedral numbers, that is, numbers of the form (”;2), in an arithmetic
progression.

7.6 Define an Egyptian triple to be a triple (a, b, ¢) of integers such that

1 1 1

a b ¢
Such an Egyptian triple is called primitive if gcd(a, b) = 1.

(i) Show that if (a, b, ¢) is a primitive Egyptian triple, then ged(a, c) = ged(b, ¢) = 1.

(i) Show that for any primitive Egyptian triple (a, b, c¢) with a < b, we can uniquely
determine two relatively prime positive integers s < ¢ such that

a=s(s+t), b=t(s+1), c = st.
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Challenge Exercises

7.7

7.8

7.9

7.11

7.12

7.13

2 is a number

Find a parametrization of all pairs (1, ) of natural numbers such that n> — m
of the form 2*, and prove that your parametrization is a bijection.

Find a complete parametrization of all triples (a, b, c¢) satisfying gcd(a, b, c) = 1 such that

111
2 -

Note: The condition gcd(a, b, ¢) = 1 does not imply that a, b, and ¢ are pairwise relatively
prime.

Show that for every positive integer y divisible by 4, there is a primitive Pythagorean triple
(a,b,c) with b = y.

Show that every odd positive integer x > 3 can be written in the form > — 5%, where s < t are
relatively prime positive integers of opposite parity. Conclude that every odd integer x > 3
occurs in a Pythagorean triple (a, b, ¢) with a = x.

Define

Xp = FpFpp + (_l)n,

Yn i= 2F Fui,
Zni=Fp +FL,|,

where Fy is the kth Fibonacci number. Show that (x,, y,, z,) is a Pythagorean triple for each
n.
Let

ay = FyFy — (_l)n,
by = F}+FZ%,

Cn = 3F,Fpey + (=1)".

be defined as in Exercise 1.15, so that (a2, b2, ¢2) is an arithmetic triple of squares. Show
that
2 ifn=1 (mod 3),

cd(a,, b,, =
god(an, bn, cn) {1 otherwise.

Consider three squares a?, b2, and ¢ in an arithmetic progression in increasing order.
(a) Show that at least one of
c—b,c—a,and b—a
1s divisible by 3.
(b) Show that at least one of
c—b,c—a,and b—a

is divisible by 4.
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(c) Show that at least one of
bandc —a

is divisible by 5.

(d) Find all arithmetic progressions (a?, b%, c?) such that ¢ — a = 60, where only a is
allowed to be negative. Are there any such triples with gcd(a, b, c¢) = 1?

(e) Find all primitive arithmetic progressions (a2, b2, ¢?) such that ¢ —a = 120, where only
a is allowed to be negative. Hint: There are four such triples.

7.14 Find all solutions to the equation x> — 2y? = 1.
7.15 Master Theodore’s problem for Leonardo Pisano [FS1987, Proposition 24]. Find three
positive integers x, y, and z such that the numbers

x+y+z+x% x+y+z+x>+y%  and  x+y+z+xi+yP+ 72

are all squares.
7.16 Consider a quadruple (a, b, ¢, d) such that gcd(a, b, c,d) = 1 and

a’+b*+c? = d*.

Prove that there is a unique quadruple (s, 7, u, v) such that gcd(s, t,u,v) = 1, the numbers
s% + ¢? and u? + v? have opposite parity, and

a=2(su—tv),
b =2(sv + tu),
c:s2+t2—u2—v2,

d=s*+1t>+u®+v2
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Chapter 8

Infinite Descent

8.1 The Method of Infinite Descent

The method of infinite descent was invented by Fermat. He used this method effectively to solve
various problems, including that there are no solutions to x* + y* = z* in the positive integers,
and that the area of a right triangle is not a perfect square. The method of infinite descent is used
to show that certain properties or identities are impossible, by showing that if they do hold then
an infinitely descending sequence of natural numbers can be constructed. The following theorem
shows that there is no such sequence.

Proposition 8.1.1. There is no infinite descending sequence
apg>ayp >az > -
of natural numbers.

Proof. Suppose, by way of contradiction, that there is such a sequence
apgp>ay >ay > - .

Then the set
A :={agp,ay,as,...}

is a nonempty subset of the natural numbers, and by the well-ordering principle of the natural
numbers it follows that this set has a least element. However, all the elements in A are of the form
a, for some natural number N, and none of these elements are minimal, since we have assumed that
a, > au+1. This contradiction shows that our assumption that there exists an infinite descending
sequence must be false, and thus there is no such sequence. O

The previous proposition leads to Fermat’s method of infinite descent. Fermat observed that if
an assumption H leads to an infinite descending sequence, then the assumption H must be false.

Theorem 8.1.2 (Method of Infinite Descent). Consider a set A equipped with a function f : A — A
and a function h : A — N. If h(f(a)) < h(a) for all a, then A is empty.

129
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Proof. Suppose, by way of contradiction, that the set A is inhabited by an element a € A. By
iterating f, we define a sequence of elements a; by

ap:=a
ais1 = f(a;).

Then we have h(ag) > h(a;) > h(a) > ---, which is an infinite descending sequence of natural

numbers. Thus, the assumption that A is inhabited was false. m]

8.2 The Area of a Pythagorean Triangle is not a Square

A classic application of Fermat’s infinite descent gives us that the area of a Pythagorean triangle is
never a square number. Recall that the area of a triangle is half the base times the height, so that
every Pythagorean triple (a, b, c) determines a Pythagorean triangle with area

1
Eab.

Theorem 8.2.1. The area of a Pythagorean triangle is not a square number.

Proof. It suffices to prove the statement for primitive Pythagorean triangles; that is, a triangle whose
sides (a, b, ¢) form a primitive Pythagorean triple. By Euclid’s parametrization of the Pythagorean
triples, we can find two relatively prime integers s < ¢ of opposite parity, such that

a=1t>- s2, b = 2st, and c =1 +s%
The area of the triangle is given in terms of this parametrization by the nonzero quantity
22y _
st(t—s°) = st(t —s5)(t + 5).

Now observe that all of these factors are relatively prime to one another; indeed, given that s and ¢
are relatively prime, it follows at once from Proposition 5.5.1 that both s and ¢ are relatively prime
to both s — ¢ and s + ¢. Furthermore, any common divisor of s — ¢ and s + t must be a common
divisor of 2s and 2¢, which implies that it must divide 2. However, s — t and s + ¢ are odd since s
and ¢ are of opposite parity, so that s — ¢ and s + ¢ are seen to be relatively prime. Thus we conclude
that if the area of the Pythagorean triangle is a square, then each of these factors must also be a
square. This allows us to write

s:uz, t:vz, t—s:xz, and t+s:y2.

Since s and t are of opposite parity, it follows that x and y are both odd. Now notice that the triple
of integers

(y—x y+Xx )
v
27 27
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is a Pythagorean triple, since

—x\2 2 2452

(y x) +(y+x) _y X _ 2
2 2 2

Furthermore, the area of the corresponding Pythagorean triangle is given by

l(y—x) (y+x)_y‘2—x2 _u?
2\ 2 2 )

8 4
The quantity u?/4 must therefore be an integer strictly less than s, which in turn is strictly less than

the area %ab. Thus, we have constructed a Pythagorean triangle whose area is a strictly smaller
nonzero square number, which leads to a contradiction by infinite descent. O

8.3 The Unsolvability of x* + y* = z*

Theorem 8.3.1. There are no three positive integers x, y, and z for which the equation

holds.

Proof. Consider the set
A:={(x,y,2) € Zoo | x* +y* = 2%}

with h(x, y, z) := z. We will construct a function f : A — A such that A(f(x,y,2)) < h(x,y,2)
for every (x,y,z) € A.

First, we notice that if (x, y, z) is a triple of positive integers satisfying the equation x* + y* = z2,
then (x2, y?, z) is a Pythagorean triple. Since we can always divide out any common factors, we
may assume that x and y are relatively prime. Furthermore, we may assume that y is even, so that
by Euclid’s parametrization there are relatively prime positive integers s < ¢ of opposite parity such
that

2=P-g
y? = 2st,
z=1"+5°

The key observation is now in the first equation: We obtain a new Pythagorean triple x> + s = £2,
allowing us to apply Euclid’s parametrization of Pythagorean triples once more. Since x is odd it
follows that s is even, so we find relatively prime positive integers # < v such that

x =v? —u?
s =2uy

t=v>+u’
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Now it follows that y? = 4uv(v? + u?). We claim that the numbers uv and v> + u? are relatively
prime. To see this, note that both  and v are relatively prime to v + u? since

gcd(u,v2 + uz) = gcd(u,vz) =1 and gcd(v,v2 + u2) = gcd(v,uz) =1,

and hence their product uv is also relatively prime to v + .

Since uv and v? + u? are relatively prime, the fact that 4uv(v? + 1?) is a square implies that both
uv and v? + u? are squares. Given that u and v are relatively prime, this implies that x and v are
squares. It follows that there are integers a and b such that u = ¢ and v = b2, and thus we see that

vV+ut=a*+b*
is a square, say ¢2. We have therefore shown that any triple of positive integers x, y, and z such that
x* + y* = z2 we can construct positive integers a, b, and ¢ such that

a* +b* = 2.

This finishes the construction of the function f : A — A. Furthermore, the strict inequality
c? = 5 < s> +1? = 72 shows that h( f(x, y, z)) < h(x,y, z), so we conclude by the method of infinite

descent that the set A must be empty. O

Corollary 8.3.2. There is no solution to the equation

where x, y, and z are positive integers.

Proof. Given such a solution, seta = x, b = y,and ¢ = z2. Then we have

a* + bt = cz,

which is impossible. O

8.4 The Nonexistence of Four Squares in an Arithmetic Progres-
sion

We have shown in Theorem 7.5.2 that there is a bijective correspondence between arithmetic triples
of squares and Pythagorean triples. It is natural to wonder whether there are any longer arithmetic
progressions of squares. Fermat posed this problem in his correspondence with Bernard Frénicle de
Bessy in 1640, and noted that it was impossible to find four such squares. The first publicly known
proof is due to Euler. Here we will follow a proof of Alf van der Poorten [P002007], who observed
that any four pairwise relatively prime squares a?, b2, ¢?, and d? in an arithmetic progression
determine, besides the Pythagorean triples corresponding to (az, b2, cz) and (bz, c2, dz), a third
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Pythagorean triple. To see this, assume the step size is a number of the form 2n, where it follows
from Exercise 5.20 that n is divisible by 12, and let x be the average of b2 and ¢? so that b*> = x —n
and ¢? = x + n. Then the number y := abcd satisfies

y2 = a?b*c?d? = (x = 3n)(x — n)(x + n)(x + 3n) = (x> — n?) (x> — 9n?).
By completing the square, we see that
y? = x* = 10n%x% + 9n* = (x* = 5n%)? - 16n*.
Thus we obtain a Pythagorean triple
y2 + (4n?)? = (2% - 5n°)2%.

Since a, b, ¢, and d are assumed to be relatively prime, the number y is relatively prime to 4n and
thus to x and x> — 512, This implies that our newly obtained Pythagorean triple is primitive. This
Pythagorean triple is our entry into a descent argument.

Lemma 8.4.1. For every four pairwise relatively prime squares a*, b%, ¢, and d* in an arithmetic
progression we can uniquely determine a pair of relatively prime positive integers u and v such that
4u? +v2 and u® + v? are both squares, and the step size in the arithmetic progression of squares is
2uv.

Theorem 8.4.2 (Fermat—Euler). Every arithmetic progression of length four of the integer squares
is constant.

8.5 The Congruent Number Problem

Recall from Section 7.5 the challenge that Master John posed in the early 13th century to Leonardo
Fibonacci: To find a rational number g such that both

q* -5, and g*+5

are both rational. Or equivalently, to find a Pythagorean triangle whose area is five times a square.
Master John must somehow have known that the number 5 in his challenge was special: It is the
smallest positive integer for which his challenge has a solution.

Definition 8.5.1. A positive integer a is said to be a congruent number if it occurs as the area of a
right triangle with rational sides and rational hypotenuse.

From Fibonacci’s solution to Master John’s challenge we thus conclude that 5 is a congruent
number: The area of the rational right triangle with sides

3 20 41
a—2, b—3, and c—6.
is 5.
The number 6 is also congruent since it is the area of the (3, 4, 5)-triangle. The following lemma
rephrases the condition of being a congruent number in terms of Pythagorean triangles.
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Lemma 8.5.2. A number n is congruent if and only if there is a primitive Pythagorean triangle
whose area is n times a square.

Proof. Consider three rational numbers a, b, and ¢ such that

ab
a’ +b? = c2, and — =n,
2
so that n is presented as the area of a right triangle with rational sides and hypotenuse. By multiplying
a, b, and ¢ with m, which we define to be the least common multiple of the denominators of a and
b, we obtain integers A := ma, B := mb, and C := mc such that
AB
A*+B*=C?*  and - = nm?
so that (A, B, C) constitutes a Pythagorean triple whose area is n times a square. By dividing out
any common divisors, we obtain a primitive such Pythagorean triangle. Since this process is clearly
reversible, this proves the claim. O

Theorem 8.5.3. No square positive integer is a congruent number.

Proof. This claim follows from Lemma 8.5.2 and Fermat’s Theorem 8.2.1, which states that the
area of a Pythagorean triangle cannot be a square. m|

We will show in the following theorem that the number 2 is not congruent. The noncongruence
of the number 3 is stated as an exercise. Having the integers 1, 2, 3, and 4 ruled out as congruent
numbers, we see indeed that 5 is the least congruent number.

Theorem 8.5.4. If a positive integer is twice a square, then it isn’t congruent.

Proof. This theorem can be stated equivalently as: The area of a primitive Pythagorean triangle
cannot be twice a square. To derive a contradiction, we assume that a Pythagorean triple (A, B, C)

exists with

2

AB
— =2m~.

2
By Euclid’s parametrization of the primitive Pythagorean triples, a Pythagorean triple as described
above is uniquely determined by a pair of relatively prime positive integers s < ¢ of opposite parity,
with
A=r-s* B=2st, and C:=1 +s

Using this parametrization, we find the following equation for the area:
st(? = s%) = 2m>.

However, the integers s, ¢, and 1> — s> are all relatively prime, which implies that exactly one of

them—either s or 7—is twice a square and the other two are squares. O
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Corollary 8.5.5. No power of 2 is congruent.

Proof. Any power of 2 is either a square or twice a square, so it can’t be congruent by Theorems 8.5.3
and 8.5.4. m|

Determining which numbers are congruent turns out to be an incredibly difficult problem, which
is still unsolved. This problem is called the congruent number problem, and via Tunnell’s theorem
it has connections to the famous Birch and Swinnerton-Dyer conjecture.

8.6 Vieta Jumping
Vieta jumping is a problem-solving technique that builds on the observation that
(x=r)(x—s) = x> = (r + 5)x +rs.

We saw in Theorem 7.3.1 that if 7 is a root of a monic polynomial x> — Bx + C, then the other root
s satisfies

s=B-r=—.

Thus, if we know one root of a quadratic polynomial then we can easily ‘jump’ to the other root
using one the above formulas. Vieta jumping became a popular problem-solving technique for
international contests such as the International Mathematics Olympiad.

Example 8.6.1. In Exercise 5.22 you were asked to show that for any two positive integers x and
y such that xy | x*> + y%, we must have x = y. The expected solution was to observe that the
discriminant of the quadratic equation x> — kxy + y> = 0 seen as an equation in one variable x and
a parameter y is (ky)? — 4y?, which is a square if and only if k = 2. Although this problem can
readily be solved directly, we will use it here to illustrate Vieta jumping.

We first observe that the quadratic equation

X2 —kxy+y?=0

arising from the divisibility condition xy | x*> + y? is homogeneous in the sense that each of the
three terms have the same degree in x and y combined. Thus, if x an y satisfy this polynomial
equation, then so must

X ’. Y

Vo= ——
ged(x, y)

/.

x = —— and
ged(x, y)

We can therefore solve the problem by showing that the only pair of coprime positive integers x and
y satisfying the polynomial equation must satisfy x =y = 1.

To see this, we may assume without loss of generality that 0 < y < x. Given that x is a solution of
the quadratic equation ¢2 — kty + y? in the variable ¢, it follows that the other solution is x’ := ky — x.
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Notice that gcd(ky — x,y) = 1, so that x” := ky — x and y are again relatively prime. Furthermore,
since xx’ = y? it follows that .
0<x' =2 < y.
X
We have thus found a new solution with x” < y. Now we can swap the roles for x” and y and
repeat the process, obtaining every smaller solutions in the positive integers. Since this is clearly
impossible, it must have been impossible for there to be a pair of relatively prime positive integers

x and y such that xy | x2 + y?.



EXERCISES 137

Exercises

Starter Exercises

8.1 Use the method of infinite descent to show that there are no integer solutions to the equation
x4+ y? =3¢
such that r > 0.
8.2 Let x and y be positive integers satisfying the equation
x? - Xy + y2 = 1.

(a) Use the discriminant y> — 4(y? — 1) to give a direct proof that the only solution is
x=y=1.
(b) Find a second proof by Vieta jumping that x =y = 1.

Routine-Building Exercises

8.3 Use the method of infinite descent to show that if @ and b are relatively prime and the product
ab is a square, then both @ and b are squares.
8.4 Show that there are no positive integer squares of the form

2x% + 2xy + 2y2.
8.5 Use the method of infinite descent to show that there are no integer solutions to the equation
xz+y2+z2 =7
such that r > 0.
8.6 Prove that the area of a Pythagorean triangle cannot be twice a square.

Challenge Exercises

8.7 Prove that the Diophantine equation

has no solutions in the positive integers.
8.8 Show that if x and y are positive integers such that xy divides x> + y? + 1, then

2y 4l
Xy B
8.9 Letx, y, and z be positive integers such that xy + yz + zx divides x> + y? + z2. Prove that

3.

X2+ 3?2+
Xy +yz+2zx
is a perfect square.
8.10 Show that the only triangular number which is also a fourth power is 1.
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Chapter 9
Modular Arithmetic

9.1 The Congruence Relations

Carl Friedrich Gauss introduced the congruence relations in his monumental work, Disquisitiones
Arithmeticae [Gaul986]. The congruence relations allowed him to systematically simplify the study
of the integers. Prior to Gauss’s invention, number theory was pursued with a variety of ad hoc
techniques that often made proofs less transparent than they could be. His key insight was that
many properties of the integers depend not on their exact size, but rather on their remainder when
divided by a fixed number.

Definition 9.1.1. We say that a is congruent to b modulo c, written
a=b (mod c),
if ¢ | a — b. The number c is called the modulus of the congruence.

Example 9.1.2. We have
17 =2 (mod 3)

because 17 — 2 = 15 and 15 is divisible by 3. Similarly, we have
28 =3 (mod 5)
because 28 — 3 = 25 and 25 is divisible by 5.
Example 9.1.3. The most well-known system for modular arithmetic is the 12-hour clock. If a
typical 8-hour workday starts at 9 in the morning, then it ends at
9+8=5 (mod 12),

that is, at 5 in the afternoon. Analog clocks also display a modular system with base 60 to mark the
minutes.

Since the clock is the most well-known system of modular arithmetic, some people use the term
clock arithmetic for modular arithmetic.

141
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Figure 9.1: The 12-hour clock contains two systems of modular arithmetic: A system with modulus 12 to
mark the hours and a system with modulus 60 to mark the minutes.

Example 9.1.4. A classic application of modular arithmetic is to compute the day of the week it is
on any given date. Various people, including Gauss, Zeller, and Conway, have found algorithms for
this purpose. We will present here Zeller’s algorithm to compute which day of the week it is on day
d of month m in year y.

In essence, the weekday algorithm proceeds by separately computing the number Y (y) of days
in all the prior years, the number M (m) in all the prior months of the current year, and the number
D(d) of all the days in the current month. The number

Y(y)+ M(m) + D(d)

thus obtained is then reduced modulo 7 and calibrated to obtain the following correspondence
between residues modulo 7 and days of the week:

0 — Sunday,
1 — Monday,

6 — Saturday.

The main difficulty is obtaining the right correction terms for leap days. Since leap days are
added at the end of February, it is therefore customary to consider the days in January and February
to belong to the prior year. That is, we will be working with the values

m =

, {m+12 ifm=1orm=2, , {y—l ifm=1orm=2,
and y =

m otherwise, y otherwise.

Every year has 365 days, except in a leap year, which has an extra day at the end of February. In
the Gregorian calendar, every fourth year is a leap year, except every hundredth year, in which the
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leap day is skipped, except every four hundredth year, in which skipping the leap day is skipped.
Thus, the exact number of days in all years prior to the given date is

Yy Y
| ==+ .
{ 100| {400|
Furthermore, since we are only interested in the quantity Y (y”) modulo 7, we observe that 365 =
1 (mod 7) so that the factor 365 can be dropped from the first term.
The quantity M (m’) returns the number of days in all full months in the given year y’, from
March to the given month m’. The standard length of one month is 30 days, so that M (m’) is

30(m’ — 3) and a correction term for the months having a 31st day. The months from March to
January having a 31st day follow the following pattern:

’

Y

4

Y(y') := 365y +

1,0,1,0,1,1,0,1,0, 1, 1.

Note that there is a recurring pattern of 1,0, 1,0, 1, which is truncated after eleven steps. The
function that makes increments of 1 according to this pattern is given by

3x+2
5

Thus, the number M (m”) of days in the year from March 1st onwards is

M(m") :=30(m’ - 3) +

3(m' —3) +2
M)

We note that 30 = 2 (mod 7), so the factor 30 in the first term may be replaced by 2. Furthermore,
we will drop any constants such as 2 - (—3) since we will be recalibrating the function towards the
end.

Finally, we add the number d of the given day in the month plus a given calibration constant c.
The formula that calculates the correct day in the week is thus

c Y y Y
+ = - == |+ |=
Y { 4 | { 1oo| {400
where m’ and y’ are determined as previously specified.
The lecture in which this example is presented was on September 23rd, 2025. For this date,

we have d := 23, m’ := 9, and y’ = 2025. Then Y (y") = 2025 + 506 — 20+ 5 = 2516, M(m’) =
2-9+5=23and D(d) = 23 +2 = 25, so that the day of the week comes out to be

’

+d+2 (mod 7),

3
+2m’+{ m

2516 +23+25=2 (mod 7),

a Tuesday.
We note that our formula for the day of the week does not take into account some rare oddities,
most of which have occured during the process of switching from the Julian calendar to the Gregorian
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calendar. Italy, Poland, Portugal, and Spain skipped 10 days between Thursday October 4th and
Friday October 15th; Sweden and Finland had a February 30th in 1712; Britain and its colonies
skipped 11 days from Wednesday September 2nd, 1752 to Thursday September 14, 1752; and
Greece skipped 13 days between February 14th, 1923 and March 1st, 1923. In 1867, when the US
bought Alaska from Russia and Alaska switched from the Julian calendar to the Gregorian calendar,
Friday October 6th was followed by Friday October 18th, thus having two consecutive Fridays.

Remark 9.1.5. Congruence modulo 0 is equality, because O | b — a holds if and only if b —a = 0.
Congruence modulo 1, on the other hand, is true for any two integers a and b, because 1 | b — a is
always true.

Also, we note that « = b (mod c¢) holds if and only if = b (mod —c) holds. For this reason,
the modulus is usually taken to be a natural number .

In the following lemma we establish that a and b are congruent modulo 7 if and only if they
have the same remainder after division by n.

Lemma 9.1.6. Consider integers a and b, and a positive natural number n, and suppose that
a=qn+randb = pn+s, where 0 <r,s < n. Then the congruence

a=b (mod n)
holds if and only if r = s.

Proof. By definition, the congruence @ = b (mod n) holdsifand only ifn | a—b. Sincea = gn+r
and b = pn+s,where 0 <r,s <nweseethatn | a—bholdsifandonlyifn | (gn+r)— (pn+s).
Rewriting the expressing (gn + r) — (pn + s), we see that

n|(gn+r)—(pn+s) if and only if n|(g—pn+(r-s).

Now we note that the number (g — p)n is divisible by n, so we find thatn | (¢ — p)n + (r —s) holds
if and only if n | r — s. However, the number r — s satisfies the strict inequalities

-n<r—s<an,

and the only integer in this range that is divisible by 7 is the integer 0. Thus we see thatn | r — s
holds if and only if r = s, completing the chain of logical equivalences. m|

Example 9.1.7. Recall from Theorem 4.4.1 that any number n can be written as

n= li d:b'
i=0

in base b > 1. Given that n is written in this way, we have n = dy (mod b). Indeed, the digit d
was constructed using the Euclidean Division Theorem as the remainder of n after division by b.
For example, the congruence 37 =7 (mod 10) holds.
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An important property of the congruence relations, which makes them so useful in the study of
the integers, is that they are compatible with the arithmetic operations of addition and multiplication.

Proposition 9.1.8. Suppose that a = a’ (mod n) and b = b’ (mod n). Then the following
congruences hold:
a+b=d +b" (mod n),

ab=a'b’ (mod n).
Consequently, for any integers x and y,
ax+by=a'x+b’y (mod n).
Proof. By assumption we have thatn | a —a’ and n | b — b’. Thus it follows that n divides the sum
nl(a-ad)+b->b")=(a+b)-(d +b"),

which shows that a + b = a’ + b’ (mod n). Moreover, n divides any linear combination of a — a’
and b — b’, so in particular we have

nl(a-a)b+d(b-b")=ab-adb+adb-ab =ab-adb'.
This shows that ab = a’b’ (mod n). O

One way of thinking about the following corollary, is that every polynomial is periodic modulo
n. In other words, every polynomial repeats itself modulo n after every n steps.

Corollary 9.1.9. Ifx =y (mod n), then we have

-1 -1

Zakxk = Zakyk (mod n) .

k=0 k=0

The power of modular arithmetic is effectively demonstrated with divisibility tests. Consider a
number n written in base 10 as
-1
n= ) dil0.
k=0

Then n is divisible by 9 if and only if the sum of its digits is divisible by 9. Indeed, since 10 =

1 (mod 9), it follows that
I-1 I-1
demk - delk (mod 9),
k=0 k=0

and we recognize that the right-hand side is just the sum of the digits of n. For example, the number
34,524 is divisible by 9 because 3 +4 + 5+ 2 +4 = 18 and the number 18 is divisible by 9 because
1+8=09.
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Remark 9.1.10. One might wonder whether congruence relations are also preserved by operations
like the greatest common divisor. However, this is not the case. For a counter example, consider the
congruences 6 = 16 (mod 10) and 15 =25 (mod 10). The greatest common divisor of 6 and 15
is 3, while the greatest common divisor of 16 and 25 is 1. Thus we see that, even though 6 = 16
and 15 = 25 modulo 10, we have

gcd(6,15) # ged(16,25) (mod 10).

9.2 Equivalence Relations

The congruence relations are examples of equivalence relations, which we will now define.

Definition 9.2.1. An equivalence relation on a set A is a binary relation ~ satisfying the following
three conditions:

(1) Reflexivity. For any element a € A, we have

a~da.

(i1) Symmetry. For any two elements a, b € A, we have

(a~b)= (b~a).

(ii1) Transitivity. For any three elements a, b, c € A, we have

(a~b)AN(b~c)= (a~c).

Thus, where the ordering relation of a poset is reflexive, antisymmetric and transitive, an
equivalence relation is reflexive, symmetric and transitive. The standard example of an equivalence
relation is equality itself, which is indeed reflexive, symmetric and transitive.

Proposition 9.2.2. For any natural number n, the congruence relation = modulo n is an equivalence
relation.

Proof. To see that the congruence relation modulo 7 is reflexive, note that a — a = 0 and any
number divides 0. Thus the congruence a = a (mod n) always holds. To see that the congruence
relation modulo 7 is symmetric, note thatif n | @ — b then n | —(a — b) = b — a. This shows that
a =b (mod n)implies b = a (mod n). To see that the congruence relation modulo 7 is transitive,
assume that n | a — b and that n | b — c¢. Then it follows that

n|(a-b)+(b-c)=a-c,

showing that @ = ¢ (mod n). O
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Proposition 9.2.3. For any two integer fractions §, and 7, the sameness relation given by

:= (ad — bc =0)

SIS
SH

is an equivalence relation.

Proof. Reflexivity follows from the fact that ab — ba = 0. Symmetry follows from the fact that if
ad — bc =0, then ¢b — da = 0. To prove transitivity, suppose that ad — bc =0 and cf — de = 0.
Then we have

d(af —be) = (da)f — b(de) = (bc)f —b(cf) =0.

Since denominators of integer fractions are assumed to be nonzero, it follows that d # 0, so that
af —be =0. m|

Equivalence relations come about in many forms, and one can get quite creative in defining
them. We illustrate the generality of equivalence relations with some examples.

A common way in which equivalence relations come about is via a function. Given a function
f A — B, there is an equivalence relation ~ ¢ on the set A, given by

X~ry if and only if f(x) = f(y).
This relation is also called the kernel of f.
Proposition 9.2.4. For any function f : A — B, the relation ~y is an equivalence relation.

Proof. To see that any relation of the form ~ / is an equivalence relation, we need to check reflexivity,
symmetry, and transitivity. Note that we have reflexivity because f(x) = f(x) for any x € A. The
relation ~ ¢ is symmetric because f(y) = f(x) holds whenever f(x) = f(y) holds. Finally, the
relation ~ ¢ is transitive because f(x) = f(z) holds whenever both f(x) = f(y) and f(y) = f(z)
hold. O

Example 9.2.5. Consider the function r : Z — {0, ...,n — 1}, defined via the Euclidean Division
Theorem so that r(x) is the unique integer 0 < r(x) < n such that x — r(x) is divisible by n. Then
the equivalence relation ~, is such that x ~, y if and only if x and y have the same remainder after
division by n. In other words,

x~yex=y (mod n).

Another way in which equivalence relations come about is by looking at iterations of an operation
T : X — X. We illustrate this by an example first.

Example 9.2.6. Recall from Exercise 4.5 that Zeckendorf’s representation theorem established that
any natural number n can be written uniquely as a sum

lh-1
n= Z dn i Fri2
k=0
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of nonconsecutive Fibonacci numbers with index at least 2. Now we define an equivalence relation
~F by declaring that two natural numbers m and n are equivalent, if one can be obtained from the
other by shifting their Zeckendorf representation. More precisely, we define m ~r n to hold if and
only if there exist natural numbers s and ¢ such that

Ln—1 -1
Z dm,ka+s+2 = Z dn,ka+t+2-
k=0 k=0

For example, the number 17 is written (100101)f in the Zeckendorf notation, and its shifts are the
numbers (1001010) = 28, (10010100)r = 45, and so on. Thus we have

17 ~p 28 ~p 45 ~p -+ .

The general method of obtaining equivalence relations of this kind assumes an arbitrary operation
T : A — A. Given such an operation, we define the equivalence relation ~7 by declaring that

X~y ifand only if ~ F(; e T (x) = T'(y).

In technical terminology, the set A equipped with the operation T form a dynamical system, and when
x ~7 y holds we say that x and y have the same eventual orbit. The operation T in the equivalence
relation ~5 of the previous example is the shift operation on the Zeckendorf representation, which
simply appends a digit 0.

Proposition 9.2.7. For any operation T on a set A, the relation ~7 is an equivalence relation.

Proof. To see that the relation ~7 is indeed an equivalence relation, we need to verify reflexivity,
symmetry, and transitivity.

The relation ~7 is reflexive, because 7°(x) = x = T%(x), and the relation ~7 is symmetric
because the condition that 3 e (T°(x) = T'(y)) is symmetric in x and y. To see that ~7 is
transitive, consider s, ¢, u, v such that 7% (x) = T*(y) and T"(y) = T"(z). Then we have

T (x) = T(T*(x)) = T(T'(y)) = T(T"(y)) = T"(T"(2)) =T""(2),
showing that x ~7 z. O

Perhaps one of the most famous dynamical systems on the set of positive integers is due to
Collatz, whose function 7 is defined by

n/2 if n is even
T(n) := .
3n+1 otherwise.

For example, starting at the number 3, repeated application of the Collatz function produces the

sequence:
3,10,5,16,8,4,2,1,4,---.
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Once the sequence reaches 1, it enters the cycle
4210 -
The famous and elusive Collatz conjecture states that for every positive integer n, the sequence
n, T(n), T>(n), ...

eventually reaches the value 1. In our notation, the Collatz conjecture asserts that n ~7 1 for every
positive natural number #.

9.3 Equivalence Classes and Residue Systems

Definition 9.3.1. Consider an equivalence relation ~ on a set A. Then the equivalence class of an
element a € A is the set
[a] :={x e A|a~x}.

Example 9.3.2. In the case where the equivalence relation under consideration is a congruence
relation with modulus 7, then the equivalence classes are called congruence classes. For any positive
integer n, there are exactly » distinct congruence classes modulo 7, corresponding to the n possible
residues 0 < r < n after division by n with remainder.

The congruence class modulo 2 of any even integer consists precisely of all the even integers,
and the congruence class of any odd integer consists precisely of all the odd integers.

To see this, suppose that a is an even integer. Then @ = x (mod 2) holds if and only if a and x
have the same remainder after division by 2. Since the remainder of a divided by 2 is 0, it follows
that a is congruent to x precisely when x is divisible by 2; that is, when x is even. This shows that
for an even integer a, the congruence class

[a] ={x€A|a=x (mod 2)}

is the set of even numbers.
Similarly, if a is an odd integer, then @ = x (mod 2) holds if and only if x is also odd, because
a =x (mod 2) holds if and only if x divided by 2 has remainder 1, which means that x is odd.

The equivalence classes of an equivalence relation ~ on a set A form a set
A/~ :={U C A | 3geaU = [a]}

In other words, the set of equivalence classes of ~ is the set of subsets U C A such that U = [a] for
some a € A. The set A/~ is called the quotient of A by the equivalence relation ~. Furthermore,
the function

a—la]l :A— A/~

sending an element to its equivalence class is called the quotient map. We often write g for the
quotient map.
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Proposition 9.3.3. For any equivalence relation ~ on a set A, the quotient map
a—la]l 1 A—> A/~
satisfies the following two conditions:

(1) The quotient map is surjective. This means that for any equivalence class U C A there is an
element a € A such that U = [a].

(i1) The quotient map is effective. This means that for any two elements a, b € A we have

[a] = [b] if and only if a~b.

Proof. The first claim is true by definition: the set of equivalence classes is defined as
{U < Al3@enU = [a]}.

In other words, the set of equivalence classes is the set of subsets of A of the form [a] for some
a € A.

For the second claim, let a,b € A. If we have the equality [a] = [b], then it follows that
b € |a], so that a ~ b. For the converse, if a ~ b holds, and x € A, then we have a ~ x if and
only if b ~ x by symmetry and transitivity of the relation ~. This shows that x € [«] if and only if
x € [b]. Thus, the subsets [a] and [b] contain the same elements, so they must be the same. O

Definition 9.3.4. A complete residue system modulo n is a choice of exactly one element from each
congruence class modulo n. In other words, a complete residue system is a set

{ri,....rn}

satisfying the condition that for every integer a there is a exactly one index 1 < i < n such that

a=r; (mod n).
Example 9.3.5. For every nonnegative integer n, the set

{0,...,n—1}

forms a complete residue system modulo n. Similarly, any set

{a,...,a+n-1}
of n consecutive integers is a complete residue system modulo 7.

Remark 9.3.6. Since complete residue systems contain a unique element in every congruence class,
there is for every complete residue system {ro, ..., r,—1} a bijection

N/(= (mod n)) = {ro,...,rn_1}.
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9.4 The Integers Modulo n

We have seen that the congruence relations modulo a natural number n form equivalence relations
that are compatible with the arithmetic operations of addition and multiplication. We have also
seen that equivalence relations give rise to equivalence classes, and that the set of all equivalence
classes for a given equivalence relation is called the quotient. Quotients are important mathematical
constructions, which are used to simplify mathematical problems and constructions by treating
similar or equivalent elements of a set as the same.

Definition 9.4.1. We define the set Z/nZ of integers modulo n as the set of congruence classes
modulo n.

The set of integers modulo # can be equipped with addition and multiplication in the following
way:

[a] + [b] := [a + D]
[a][b] := [ab]

Notice that the result of these operations depends only on the equivalence classes, not on the
particular integers a and b chosen to represent the equivalence classes [a] and [/]. Recall from
Proposition 9.3.3 that we have [a] = [a’] if and only if a = @’ (mod n), and similarly we have
[b] = [b’] if and only if b = b’ (mod n). Thus, for any @ = a’ (mod n) and b = b’ (mod n), it
follows from Proposition 9.1.8 that a + b = @’ + b’ (mod n) and ab = a’b’ (mod n). In other
words, if [a] = [@’] and [b] = [b’], then we have

= [a'] + [V']
[al[b] = [a'][D"].
This ensures that the definitions of addition and multiplication on the integers modulo n is well-
defined on the congruence classes modulo 7.

Remark 9.4.2. The definitions of addition and multiplication on the integers modulo n follow a
general pattern of defining functions f : A/~ — B out of quotient sets. Given a functiong : A — B,
a function f : A/~ — B is said to be defined by descent from g if f is defined by

f(lal) := g(a).

For this definition to make sense, the values of f must depend only on the equivalence classes. In
other words, if a and a’ represent the same equivalence class, so that a ~ a’, then we must have
that f([a]) = f([a’]). In other words, we must have that

g(a) =g(a).

By verifying that a ~ a’ implies f([a]) = f([a’]), we ensure that f is well-defined. The well-
definedness condition ensures that f returns the same output for all elements of the same equivalence
class.
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Example 9.4.3. The well-definedness condition is important to verify, because not all functions are
well-defined with respect to the congruence relations modulo 7.
Take, for example, the absolute value function a +— |a| on the integers. Then the operation

[a] = |al
is not well-defined on the integers modulo 3, because 2 = —1 (mod 3) while
2] £ | - 1| (mod 3).

Typical functions that are well defined on congruence classes modulo n, include functions that
are entirely built up from arithmetic operations, such as polynomials.

Theorem 9.4.4. The set Z/nZ of integers modulo n satisfies the following laws of arithmetic:

x+y)+z=x+(y+2) (xy)z =x(yz2)
O+x=x lx = x
x+0=x xl=x
x-x=0 x(y+2) =xy+xz
—-x+x=0 (x+y)z=xz+yz
X+y=y+x Xy = yx.

In proper mathematical parlance: the set Z/nZ equipped with the operations of addition and
multiplication form a commutative ring.

Proof. To see that (x + y) + z = x + (¥ + z), we first note that the variables x, y, and z represent
congruence classes of integers modulo n. Since for every congruence class there is an integer
representing it, it suffices to prove that

([a] + [b]) + [c] = [a] + ([b] + [c]).
By unfolding the definitions, this equation reduces to
[(@a+b)+c]=[a+ (b+c)].

However, the integers (a + b) + ¢ and a + (b + ¢) are equal, so their equivalence classes are the
same.

The proofs of the other properties follow a very similar pattern. We will give the proofs of
commutativity of addition and distributivity of multiplication over addition from the left, but leave
the other proofs to the reader.

To see that x + y = y + x, it suffices to show that
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By unfolding the definitions, this equation reduces to
la+b] =1[b+al],

and indeed those equivalence classes are the same, because a + b = b + a holds for any two integers
a and b.
To see that x(y + z) = xy + xz, it suffices to show that

By unfolding the definitions, this equation reduces to
[a(b +c)] = [ab + ac].

Again, this identification of equivalence classes holds, because we have the equality a(b + ¢) =
ab +ac.

9.5 The Multiplicative Order of an Integer Modulo n

Expanding a fraction such as % in decimal notation amounts to writing
— = —,
T 410

where each digit dj is an integer from 0 to 9 except possibly the number dy, which can be any
integer. In the case of %, the integer dy is 0. The digits di, d», d3 are called the tenth’s digit, the
hundredth’s digit, the thousandth’s digit, and so on.

We see from the above expression that the tenth’s digit of % can be computed as the integer part
of the number 17—0, which has all the decimal digits of % shifted by one position to the left. It also
follows that the remainder of the digits coincide with the digits of 3, where the numerator is the
remainder of 10 after division by 7. The first digit of the fractional part of % is the integer part of
%, which is 4. For the next digit after that, we take the remainder of 30 after division by 7, which is

2, and we compute the integer part of the fraction %. If we keep going in this manner, we find that

10 30 20 60 40 50 10
di=|=|, do=|=|, di3=|=|, da=|=|, ds=|=|, de=|—=|, d1=|=]|.
‘ M ’ M ’ M ) M i M ’ M i M
Here we see that our task at hand begins to repeat itself. We have already computed the integer part
of % in the first step, which led us to compute the integer part of 37—0, and so on. Thus, we find that

the decimal expansion of % is given by

% =0.142857142857142857 . ..
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This satisfies the property that, after shifting the decimal expansion for % by 6 places, the decimal
digits will line up exactly. A mathematically precise way of expressing that decimal expansion of
the fraction % repeats with period 6, is by the property that

16
1 .
7 7

Note that this difference of fractions is only an integer if 7 divides the number 10° — 1. In other
words,
10°=1 (mod 7).

Since 6 is the first positive integer for which 10 = 1 (mod 7), we say that the multiplicative order
of 10 modulo 7 is 6.

For the general definition of the multiplicative order of an element @ modulo n, note that if
gcd(a,n) = 1, then we can simply define the multiplicative order of a to be the least positive integer
k such that

a¥=1 (mod n).

However, if gcd(a,n) # 1 then there will not be such a positive integer. In this case we set the
multiplicative order of @ modulo # to be 0. At first glance, this may look quite arbitrary. However,
there is a natural way of looking at it.

Definition 9.5.1. Consider an integer a and a natural number n. We define the multiplicative order
of a modulo 7 to be the unique natural number m such that the ideal

Lip:={ke€Z|ad* =1 (mod n)}
is the ideal (m) generated by m.

Using this definition, we see that if gcd(a, n) = 1, then indeed the order ord, (@) of a modulo n
is the least positive integer k such that a* = 1 (mod n). If gcd(a,n) # 1, then the ideal I,,,, is the
zero ideal (0), which implies that ord, (a) = 0.

In the following theorem, which is also known as the Order Theorem, we will see that by setting
the value of the order of @ modulo n to be 0 when gcd(a,n) # 1, we prove a powerful duality
principle between multiples of ord, (a) and numbers dividing a* — 1.

Theorem 9.5.2 (Order Theorem). The multiplicative order of an integer a modulo n satisfies the
logical equivalence
ord,(a) | k & n|d* -1.

Proof. We have two cases to consider: either gcd(a,n) = 1 or gcd(a,n) # 1. In the first case,
ord,(a) is the least positive integer m such that

a”™ =1 (mod n).
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It is immediate from this condition that if m | k, then it follows that a* = 1 (mod n). Conversely,
if a¥ = 1 (mod n), then we can write k = gm + r by the Euclidean Division Theorem, where
0 < r < m. It follows that

a"=a?q" =a?" =a* =1 (mod n).

Since r is strictly less than m and m is the least positive integer such that ™ = 1 (mod n), it
follows that » = 0. Thus we conclude that ord,(a) | k. This proves the claim in the first case.

In the second case we have ord,(a) = 0. Then the condition that ord,(a) | k is equivalent to
the condition that k = 0. Thus, our task is to show that 7 | a* —1if and onlyif k =0. If k =0,
then we have a* — 1 = 0 so that n | a¥ — 1. This proves the reverse direction.

For the forward direction, assume that n | a* — 1, and consider a common divisor d > 1 of a
and n. Then we have d | a* — 1. The assumption that d > 1 then implies that d 1 a*. On the other
hand, we have assumed that d | a. Therefore, we must have k£ = 0. ]

The Order Theorem can be used to show that the digits in the fractional part of a reduced integer
fraction 7 such that b is relatively prime to 10 are periodic. The case where b is not relatively prime
can be dealt with from the relatively prime case, since we can multiply 7 with a sufficiently high
power of 10, so that after bringing it to lowest terms, the denominator becomes relatively prime
to 10. This leads us to conclude that every rational number has an eventually periodic decimal
expansion.

Theorem 9.5.3. Consider a reduced integer fraction 3 with gcd(b, 10) = 1. Then there exists a

positive integer k such that

a a
10F= - =
b b

is an integer. Furthermore, the least such k is ord;,(10).

Proof. The number 10"% — % is an integer if and only if b | 10*¥a — a, which is another way of
expressing the condition
10a = a (mod b).

Furthermore, since a is assumed to be relatively prime to b, this is equivalent to the congruence
10 =1 (mod b).
By the Order Theorem it follows that this congruence holds if and only if ord, (10) | k. O

The logical equivalence in the Order Theorem can also be used effectively to compute the order
of a power of an element in terms of the order of that element.

Theorem 9.5.4. For any integer a of order k = ord,(a), we have

k

d,(a") = —————.
ord, (a™) ged(m, k)

In particular, we have ord, (a™) = k if and only if m and k are relatively prime.
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Proof. We have the following chain of logical equivalences:

ord, (a)

ord,(a™) |1 & n|(a™' -1 & ord,(a)|ml o ged(m, ord,(a)) '

Thus, we see that ord,(a™) and k/gcd(m, k) divide the same numbers, so they must be equal. O
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Exercises

Starter Exercises

9.1 Describe a complete residue system modulo 7 consisting entirely of multiples of 3.

9.2 List all the numbers 0 < a < 6 such that ¢ = x*> (mod 6) for some x, and all the numbers
0 < a < 8 such that « = x> (mod 8) for some x.

9.3 Find the multiplicative inverses of 1, 2, 3, 4, 5, and 6 modulo 7.

9.4 Find the multiplicative inverses of 1, 3,7, 9, 11, 13, 17, and 19 modulo 20.

Routine-Building Exercises

9.5 (a) Show that no century ever starts on a Sunday.
(b) Show that any seven consecutive leap days within a century run through all weekdays.
9.6 Show that the following are equivalent for any n > 0 and any integer a:

(i) ged(a,n) = 1.
(ii) There exists an integer b such that ab = 1 (mod n).

9.7 (a) Find integers k, a, and b such that
ka = kb (mod 4), but a#b (mod 4).

(b) Prove that if gcd(k, n) = d, then we have

ka=kb (mod n)  ifandonlyif a=b (mod g)

9.8 Show thatif @ = b (mod m), then we have
gcd(a,m) = ged(b, m).
9.9 Show that for any modulus 7, the number of integers x (mod n) such that x> = 1 (mod n)
is a power of 2.
9.10 Show that if ab =1 (mod n), then
ord,(a) = ord, (b).
9.11 Consider an integer a. Show that if

a—-1|ad" -1,

then m | n.
9.12 Show that ord x_;(a) = k.
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Challenge Exercises

9.13 Let F, = 2" + 1 be the nth Fermat number. Show that F,, = 17 (mod 24) for n > 2.
9.14 Prove that for any n > 1 and any k, we have

(n-1)%|n*-1  ifandonlyif n-1]k.



Chapter 10

Systems of Linear Congruences

10.1 Solving Linear Congruences

The simplest linear congruence is the linear congruence
ax =b (mod n).

To solve this linear congruence, we are tasked with finding an integer x for which the congruence
ax = b (mod n) holds. However, we may immediately observe that if x = x’ mod n, then the
congruence ax = b (mod n) holds if and only if the congruence ax’ = b (mod n) holds. Thus,
we are really interested in solving such congruences in Z/nZ, i.e., in finding a congruence class [x]
modulo n for which the congruence ax = b (mod n) holds.

A complete solution to the linear congruence ax = b (mod n) is a description of the set of
all congruence classes [x] modulo »n that satisfy the linear congruence. We typically list these
solutions by listing the numbers 0 < x < n for which the congruence holds. For example, the linear

congruence
4x =2 (mod 6)

has two incongruent solutions modulo 6, the congruence classes of 2 and 5 modulo 6.

Definition 10.1.1. We say that a divides b modulo n if there exists an integer x for which the
congruence
ax =b (mod n).

By the definition of congruence relations, the congruence ax = b (mod n) holds if and only if
n | ax — b, which is equivalent to the problem of finding an integer y such that the equation

ax+ny=»>b

holds. By Theorem 5.6.4 we have an exact description of the set of solutions of this equation: Given
a solution axg + nyo = b, every solution is of the form

x:x0+kg, and y:yo—kg,

159
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where d = gcd(a, n). Furthermore, a solution can be found if and only if d | b, and in this case we
can find x¢ and yq through Euclid’s algorithm for finding the greatest common divisor.

Now, observe that there are exactly d incongruent solutions of the equation ax +ny = b modulo
n. Thus, we can reformulate Theorem 5.6.4 in modular arithmetic as follows.

Theorem 10.1.2. Consider two integers a and b, and a natural number n with d = gcd(a, n). The
linear congruence
ax =b (mod n)

is solvable if and only if d | b, and in this case the number of incongruent solutions is exactly d.
Furthermore, if we have one solution axy = b (mod n), then all the solutions are of the form

n
x5x0+kg

for0 <k <d.

Example 10.1.3. Consider the linear congruence
6x =15 (mod 21).

The greatest common divisor of 6 and 21 is gcd(6,21) = 3. Since 15 is divisible by 3, we expect to
find exactly 3 incongruent solutions modulo 21.

To find one solution, we first express 3 as a linear combination of 6 and 21. Normally, we would
use Euclid’s algorithm to do this, but the numbers here are small enough to immediately see that

3=4-6-21.
From this expression we find that
15=20-6-5-21.

This gives us the solution 6 - 20 = 15 (mod 21). The remaining solutions are now of the form
x=20+k-7

for 0 < k < 3. In other words, the full set of incongruent solutions of the equation 6x =
15 (mod 21) is
{6,13,20}.

Corollary 10.1.4. The linear congruence ax = 1 (mod n) has at most one solution, and it is
solvable if and only if gcd(a,n) = 1.

The previous corollary connects integers relatively prime to n to the integers that are invertible
modulo n. Indeed, if ax = 1 (mod n) has a solution, then its solution x also guarantees that the
equality

[a][x] = [1]

holds in Z/nZ. In other words, the integer a represents an invertible congruence class modulo 7.
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Example 10.1.5. The invertible congruence classes modulo 5 are the congruence classes of 1, 2, 3,
and 4. Indeed, one can verify that

1-1=1 (mod 5) 2-3=1 (mod 5)
3-2=1 (mod 5) 4-4=1 (mod 5).

Corollary 10.1.6. Consider an integer a relatively prime to n. Then the operation x +— [a]x is a
bijection on Z/nZ.

10.2 Solving Multiple Linear Congruences Simultaneously
Consider the linear congruences

10x =4 (mod 12)
15x =6 (mod 21),

and suppose our goal is to find a single solution x that simultaneously solves both of them. To
start off, we observe that if we can find such a solution, then each individual congruence must be
solvable in its own right. By Theorem 10.1.2, this is the case if and only if gcd(10, 12) | 4 and
gcd(15,21) | 6. Indeed, gcd(10, 12) = 2 and ged(15,21) = 3, so the divisibility requirements are
satisfied.

By dividing through with gcd(10, 12), we see that the linear congruence 10x = 4 (mod 12)
has the same set of solutions as the linear congruence 5x = 2 (mod 6), which we can work out
to be x = 4 (mod 6). Similarly the linear congruence 15x = 6 (mod 21) has the same set of
solutions as the linear congruence 5x = 2 (mod 7), which we can work out to be x = 6 (mod 7).
Thus, the original system of linear congruences has the same set of solutions as the system of linear
congruences

x =4 (mod 6)
x=6 (mod 7).

In other words, x is simultaneously of the form 6y + 4 and of the form 7z + 6. We can find such y
and z by solving the linear Diophantine equation

6y+4=77+6,

which reduces to 6y — 7z = 2. By Theorem 5.6.1, it follows that this equation solves if and only
if gcd(6,7) | 2, which is indeed the case since 6 and 7 are relatively prime. Using the extended
Euclid’s algorithm, we find that y = 5 and z = 4 gives a solution. In this case, we have x = 34.
Note that any integer in the congruence class of 34 modulo 42 is also a solution, so we see that

x =34 (mod 42)
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is a solution to our original system of linear congruences. Indeed, we can check that 10-34 = 28-12+4
and 15-34 =24 -21+6.

To summarize the method by which we found this solution, we first reduced each individual
linear congruence by dividing through by the greatest common divisor of the scalar and the modulus.
This way we obtained a system of linear congruences that were individually uniquely solvable. Their
solutions gave two expressions for the variable x, which combined into a single linear Diophantine
equation, which we solved by Theorem 5.6.1 and Euclid’s algorithm. As the saying goes, any good
method in mathematics begs to become a theorem. The essential theorem to solve systems of linear
congruences is the Chinese Remainder Theorem, which we will state and prove in the next section.

We also note that the methods we used to solve two linear congruences simultaneously can
be used to solve three or more linear congruences simultaneously. Suppose our original problem
included a third linear congruence

10x =4 (mod 12)
I15x =6 (mod 21)
6x =3 (mod 15).

Then we’d simply solve the first two as before, and continue solving the system of two linear
congruences

x =34 (mod 42)
x=3 (mod 5).

This system of linear congruences has solution x = 118 (mod 210).

10.3 The Chinese Remainder Theorem

An essential step in the previous example was the reduction of a system of linear congruences, to a
system of congruences of the form

a (mod m)
b (mod n).

In the following theorem we will prove that this system of congruences is uniquely solvable modulo
mn, provided that m and n are relatively prime.

Theorem 10.3.1 (Chinese Remainder Theorem). Consider two linear congruences

x =a (mod m)

x=b (mod n),

where m and n are relatively prime. Then there is a unique solution x modulo mn that solves both
linear congruences simultaneously.
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Proof. By the first linear congruence, we find that x = my + a for some integer y. Substituting this
into the second linear congruence, we obtain that

my=b-a (mod n).

This linear congruence has a unique solution modulo n, since gcd(m,n) = 1. Therefore, there
is exactly one integer 0 < yo < n such that x = myo + a. Consequently, there is exactly one
0 < x < mn that solves both linear congruences simultaneously. O

10.4 A Method Suggested by Gauss

Gauss mentions in his Disquisitiones Arithmeticae [Gaul986, Article 36] that he sometimes prefers
the following method of solving systems

x=a; (mod my), ..., x =a, (mod m,)
of linear congruences, where m, . . ., m,, are pairwise relatively prime. First, we are to find numbers
e; such that
1 (mod m;) ifj=1,
o= {1 (modimy) i =i (10.1)
0 (mod m;) ifj #i.

Having found such numbers, the solution to the original system of linear congruences is given by

n

j=1
Indeed, by the given specification of e; it follows that

n

Z aje; = a; (mod m;)

J=1

forevery 1 <i <n.

In order to find e; as specified, we need to find a multiple of M; := [],,; m; which leaves a
remainder of 1 after division by m;. That is, the number e; is determined to be the number M;u;,
where u; is the unique solution to the linear congruence

Ml'l/tl' =1 (l’IlOd ml-) .
In other words, the number u; is the inverse of M; modulo m;.
Example 10.4.1. To illustrate Gauss’s preferred method, consider the system of linear congruences

7x =2 (mod 15), 1lx =1 (mod 14), 5x =3 (mod 11).
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Before we can apply Gauss’s method, we should bring each congruence to the formx = a; (mod m;).
By inverting 7 modulo 15, 11 modulo 14, and 5 modulo 11, we see that the given system of linear
congruences is equivalent to the system

x =7 (mod 15), x=9 (mod 14), and x=5 (mod 11).
In order to find e; as specified in Equation (10.1), we need to separately solve the linear congruences
154u; =1 (mod 15), 165u, =1 (mod 14), and 210x =1 (mod 11).
These simplify as follows:
4u; =1 (mod 15), 1lur =1 (mod 14), and us =1 (mod 11).
Using the methods described in Section 10.1, we find the following solutions:
u; =4 (mod 15), u =9 (mod 14), and uz =1 (mod 11).

This givesus e1 :=4- 154, 2 :=9-165, and e3 := 1 - 210, from which we obtain the final solution
that
x=7-4-154+9-9-165+5-1-210 =247 (mod 2310)
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Exercises

Starter Exercises

10.1 Solve Master Sun’s mathematical problem, which he stated in Sunzi Suanjing, written between
the 3rd and Sth century CE: Find all integers x satisfying the linear congruences

x =2 (mod 3),
x=3 (mod 5),
x=2 (mod 7).

10.2 Three musicians perform a piece of percussion music. The first musician plays on the first of
every four beats, the second plays on the third of every five beats, and the third plays on the
second of every third beat. The performance concludes when all three musicians play on the
same beat for the first time. How many beats does the performance last?

Routine-Building Exercises

10.3 Find all integers x satisfying the linear congruences

x=4 (mod 9),
x =3 (mod 10),
x =2 (mod 11).

10.4 Find all integers x satisfying the linear congruences

x=3 (mod 5),
x=6 (mod 11),
x=9 (mod 17).

10.5 Consider the congruence
xy+7x+4y =10 (mod 13).

Compute the congruence class of y modulo 13 for x = 2,5,8 (mod 13).
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Part IV
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Chapter 11

Prime Numbers

Learning Objectives

In this chapter we define primes, discuss the sieve of Eratosthenes, the fundamental theorem of
arithmetic, and we prove in several ways the infinitude of primes. We also introduce the concept of
p-adic valuation, which is used to prove Legendre’s formula for n! and Kummer’s theorem about
the prime factorization of binomial coefficients. Finally, we prove Bertrand’s Postulate, which states
that there is a prime number between n and 2n, for any n.

After working through this chapter, you will be able to:

(1) Compute prime factorizations and p-adic valuations of structured numbers such as a" — 1,

n!, or (Z), using algebraic factorizations, Legendre’s formula, and Kummer’s theorem.

(i1) Establish elementary congruence constraints involving primes.

(iii) Prove divisibility properties using prime factorizations.

11.1 The Fundamental Theorem of Arithmetic

Definition 11.1.1. An integer a is said to be prime if it has exactly one positive proper divisor. Any
integer a # *1 that is not prime is said to be a composite number.

The numbers 0 and 1 are not prime. To see that O isn’t prime, simply note that any positive
integer is a proper divisor of 0. To see that 1 isn’t prime, note that 1 doesn’t have any proper divisors.
Indeed, it has exactly one positive divisor, namely 1 itself, but this divisor isn’t proper. We also
note that if @ > 1 is prime, then the number 1 is always a positive proper divisor. Thus we see that
a > 1 is prime if and only if the number 1 is its unique positive proper divisor.

To see that the number 2 is prime, note that its positive divisors are a subset of the set {1,2}
consisting of all the positive integers below 2. Its proper divisors are therefore a subset of {1}. The
integer 1 is indeed a positive divisor, so we see that 2 has exactly one positive proper divisor.

169
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To see that the number 3 is prime, note that its positive divisors are a subset of the set {1, 2, 3}
consisting of all positive integers below 3. The number 1 is a proper divisor, the number 2 doesn’t
divide 3, and 3 itself is a divisor but it isn’t proper. Therefore we see that the number 3 has exactly
one positive proper divisor.

The number 4 isn’t prime, because the numbers 1 and 2 are two distinct proper divisors of 4.
This process of finding all primes up to a desired bound is formalized in the sieve of Eratosthenes,
which we will now describe. Figure 11.1 displays the sieve of Eratosthenes up to 1120.

The sieve of Eratosthenes is an iterative process that generates at stage n a set P, of numbers
known to be prime at stage n, and a set Q,, of prime candidates. In other words, the sets P, form an
increasing sequence

PocPicPryc---

of sets of numbers known to be prime, where at each higher stage the set of known primes becomes
larger, and the sets Q,, form a decreasing sequence

002012022

of candidates, from which we pick our next prime. We will define the sets P,, and Q,, by a recursive
process. Initially, the set Py is empty and Qg = {n € N | n > 2} is the set of all numbers > 2. Now
we define P, to be P, U {p(n)}, where p(n) := min(Q,), and we define

On+1 = Qn \ {kp(n) | k 2 1}

In other words, the nth prime p(n) is the minimal element of Q(n), and the set Q,+; of candidates
is the set Q, minus all the multiples of p(n). In the first five stages, these sets look as follows:

n Py On

0 0 {2,3,4,5,6,7,8,...}

1 {2} {3,5,7,9,11,13,15, ...}

2 {2,3} {5,7,11,13,17,19,23, ...}

3 {2,3,5} {7,11,13,17,19,23,29, ...}
4 {2,3,5,7} {11,13,17,19,23,29,31,...}
5 {2,3,5,7,11} {13,17,19,23,29,31,37,...}

Notice that not only the minimal element of O, is prime, but every element g € Q,, such that
g < (max(P,))? is prime. This is because if ¢ < (max(P,))? is composite, then its lowest factor
must be a prime number p < max(Pj), i.e., it must be a prime number in P,. However, all the
multiples of the primes in P, have been removed from Q,, so there are no such composite numbers.

We can use this observation to obtain the list of all primes below 100, at stage 5 in the sieve of
Eratosthenes. The list of primes below 100 is

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, 83, 89, 97.
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Figure 11.1: The sieve of Eratosthenes up to 1050: The number 1 and every composite number are marked
in black, leaving just the primes in white circles.

09000200
06006060600



172 CHAPTER 11. PRIME NUMBERS

The sieve of Eratosthenes either terminates, i.e., it reaches a stage for which Q,, is empty, or
there are infinitely many primes. We will now show that there are infinitely many primes. In the
following lemma we use the concept of nontrivial divisors, which are divisors d of a natural number
n such that d # 1. The concept of nontrivial divisors should not be confused with the concept of
proper divisors, which are divisors d of a natural number n such that d # n.

Theorem 11.1.2. Any natural number n > 1 has a least nontrivial divisor, and this divisor is prime.

Proof. Suppose that n > 1. Then the set of nontrivial divisors d # 1 of n contains the number #,
so it has a least element p by the Well-Ordering Principle of the natural numbers. Then the set of
divisors of p itself is the set {1, p}, because any divisor of p also divides n, and p is assumed to
be the least nontrivial divisor. This shows that p has exactly one proper divisor, and therefore p is
prime. O

The following proposition is due to Euclid, who included it as proposition 30 of book VII of the
Elements.

Lemma 11.1.3. Suppose that p is prime, and that a is an integer. Then either p | a or gcd(p,a) = 1.

Proof. The greatest common divisor of p and a is in particular a divisor of p, so it is either 1 or p.
If gcd(p, a) = p, then we have p | a. O

Proposition 11.1.4. Consider a positive integer a. The following are equivalent:
(1) The integer a is prime.
(i) We have a > 1, and for any two integers b and c such that a | bc, we have that a | b or a | c.

Proof. Suppose first that a is prime. Since 0 and 1 aren’t prime, it follows that @ > 1. Now consider
two integers b and ¢ such that a | bc. There are two cases to consider: either a | b, in which case
we are done immediately, or a 1 b. In the case where a 1 b, it follows from Lemma 11.1.3 that a
and b are relatively prime. This allows us to apply Proposition 5.4.5, by which we conclude that
alec.

For the converse, suppose that for any two integers b and ¢ such that a | bc, we have a | b or
a | ¢, and let d be a proper divisor of a. Now consider any positive proper divisor d of a, and write
a = dk. Then it follows in particular that a | dk, so by assumption we have eithera | d or a | k.
The first condition can be ruled out, because d is assumed to be a proper divisor and therefore a 1 d.
Thus we find ourselves in the second case, where a | k and k | a. The integer k is also positive,
since a and d are positive, so it follows that a = k. This implies that d = 1, and hence we conclude
that a is prime. O

The fundamental theorem of arithmetic asserts that every positive integer can be written uniquely,
up to reordering, as a product of primes. Gauss is often credited for being the first to state this
fact as a theorem. He did so in Article 16 of his Disquisitiones Arithmeticae [ Gaul986], where he
mentioned that prior authors often assumed it or gave inadequate reasons for its truth.
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Theorem 11.1.5. For any natural number n > 0, there is a unique list € = (po, ..., pi-1) of length
l, consisting of primes po < p1 < --- < p;—1 such that

This unique list of primes is called the prime decomposition of #.

Proof. We apply strong induction on n, with base case 1. In the base case, we let £ be the empty
list. The empty list satisfies the increasing primes condition vacuously, and empty products are 1 by
definition, so the empty list is indeed a prime decomposition of 1.

For the inductive step, recall that any natural number n + 1 > 1 has a least prime divisor. If
p is the least prime divisor of n + 1, then it follows that (n + 1)/p < n. By the strong induction
hypothesis we have a unique prime decomposition (g, . .., g;—1) of (n+ 1)/p. Now define the list
t = (po,p1,--.,p1) by po := p and p;41 := g;. Then each p; is a prime divisor of n + 1, and since
Po is the least prime divisor of n + 1 we have the inequalities

Posp1 < =Py

Furthermore, we have

l [
n+l=p-((n+D/p)=po-| |pi=]]re
i=1 i=0

This proves that the prime decomposition of n + 1 exists.
To show that the prime decomposition of n + 1 is unique, let (rg, - - - , rx) be a prime decompo-
sition of n + 1. The smallest prime divisor p of n + 1 then divides the product

-

P .
i=0

This implies that p | r; for some 0 < i < k, i.e., that p = r;. However, p is assumed to be the

smallest prime factor of n + 1, so it follows that p = ro. Now it follows that (rq, ..., rg) is a prime
decomposition of (n + 1)/p, which is unique, and therefore we conclude that n + 1 has a unique
prime factorization. O

Corollary 11.1.6. For any positive integer n with prime factorization n = p'{” e p',?", the map

mi

mp
s X modpk )

x|—>(x mod p

is a bijection
7/nZ = HZ/p':kZ.
k
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Remark 11.1.7. Although the prime factorization of arbitrary large numbers can be an arduous task,
numbers of special forms can sometimes be factorized more easily. For instance, using the formula
for the difference of squares we see that

20 _1=2-12¥+ 1D
=2 -D*+ D2+ 1)
=22-D2’+D2*+ D2+ 1)
=3.5.17-257.

Even though 2'® — 1 = 65535 is a fairly large number, finding its prime factorization was fairly
effortless.

11.2 The Infinitude of Primes

The theorem asserting the infinitude of primes asserts that no finite set of primes is the set of all
primes. Many proofs of the infinitude of primes require the following lemma:

Lemma 11.2.1. If a and b are relatively prime integers, then any prime divisors of a are distinct
from any prime divisors of b.

Proof. Suppose that a and b are relatively prime, and that p and g are prime divisors of a and b,
respectively. By the assumption that a and b are relatively prime, it follows that p + b and that
q 1 a. Therefore it follows that p and g cannot be the same. m|

Theorem 11.2.2. There are infinitely many prime numbers.

Euclid’s proof of Theorem 11.2.2. We will prove that there are infinitely many prime numbers by
showing that for any finite set of prime numbers, there is a prime number not belonging to the finite
set.

Consider a finite set {po, ..., px} of primes, and define
k
n:=1+ np,’.
i=0

Then there exists, for each 0 <7 < k, a natural number g; such that n = g;p; + 1. Indeed, we can

simply define
k

aw= ] o

Jj=0,j#i
Since n can be written in this way, it follows that # is relatively prime to each p;. Consequently, the
least prime divisor of 7 is relatively prime to each p;. In other words, the least prime divisor of 7 is
not in the set of primes {po, ..., pr}. O
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11.2.1 Saidak’s Proof

There are many proofs of the infinitude of primes. The following is due to Filip Saidak [Sai2006],
who published his proof in 2006, based on the idea that if n = ab is the product of two numbers
that are relatively prime and both at least 2, then n must have two prime factors.

Saidak’s proof of Theorem 11.2.2. Let Ny := 1, and define
Nyy1 := Ny(N, + 1).

We claim that N,, has at least n prime factors. In the base case, we note that it is indeed true that 1
has at least zero prime factors. For the inductive step, suppose that N, has at least n prime factors.
The number N,, + 1 is relatively prime to N,, so its prime factors are all distinct from the prime
factors of N,. Furthermore, we have 1 < N, + 1, so N, + 1 indeed has at least one prime factor.
Thus it follows that N,,;1 has at least n + 1 prime factors, and therefore there must be infinitely many
primes. O

11.2.2 Furstenberg’s Proof, Following Cass—Wildenberg

The following proof of the infinitude of primes is, in its essence, due to Hillel Furstenberg [Fur1955].
In its original formulation, this proof makes clever use of a topology on Z. Although topologies are
not hard to define, motivating them is beyond the scope of this course. We will therefore present a
revised version of Furstenberg’s proof, following Daniel Cass and Gerald Wildenberg [CW2003].

The Cass—Wildenberg approach to prove the infinitude of primes makes use of the concept of a
periodic subset of Z. A subset A C Z is said to be periodic with period n, or simply periodic if we
merely assume such a natural number 7 to exist, if we have

XxX€eEA S x+neZ.
Thus, if A is a periodic subset of Z with period n, and x € A, then
x+kneA

for all k € Z. In particular, all inhabited periodic subsets of Z are infinite. We note two basic facts
about periodic subsets of Z, which we leave to the reader to verify:

(1) IfAq,..., A, is a finite family of periodic subsets of Z, each with their own periods, then
the union
AiU---UA,

is again a periodic subset of k. The period of the union is the least common multiple of the
periods of the subsets A;.

(i1) If A is a periodic subset of Z, then its complement A® := {x € Z | x ¢ A} is periodic with
the same period.
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The Furstenberg proof of Theorem 11.2.2, following Cass—Wildenberg. Consider the subsets
Sp={kp |k € Z},

where p is a prime number, and define

S = U Sp.
p

prime

Since every integer besides +1 is divisible by a prime, it follows that S consists of all the integers
besides +1. The complement of S is therefore the set {—1, 1}. Note that the subset {—1,1} of Z
cannot be periodic, since is inhabited and finite. This allows us to conclude that the subset S of Z is
not periodic. However, if there were only finitely many primes, then S would be periodic because it
would be a finite union of periodic subsets of Z. Thus we conclude that there must be infinitely
many primes. O

11.2.3 Erdos’s Proof

Definition 11.2.3. A natural number # is said to be square-free if the only square dividing n is 1.
In other words, n is square-free if

k* | n = k=1
for every natural number k.

By the Fundamental Theorem of Arithmetic it follows that square-free numbers are those
numbers of which the prime decomposition

n=p1:--Pn

is a product of distinct primes. In particular, if n is square free then the exponents in the prime
factorization of n do not exceed 1. For instance, the numbers 3-5-17 and 2 - 11 - 37 are square-free,
while the numbers 3% - 5-31 and 2° - 5! - 61 aren’t.

Theorem 11.2.4. Every natural number n can be written uniquely in the form
n=k’m,

where m is a square-free number. This is called the square-free decomposition of n, and the number
m is called the square-free part of n.

Proof. Consider the set of natural numbers

S :={d € N | There exists a k € N such that k*d = n}.
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Clearly, this set contains the element n itself, since n/n = 1 is a perfect square. By the Well-Ordering
Principle, it follows that S has a least element, which we call m. By definition, n/m is a perfect
square, so there is a natural number k such that

n=k’m.

Next, we need to show that m is square-free. Suppose d? | m is a positive divisor of m. Then the
quotient ¢ = m/d? is a divisor of n such that n/q is the perfect square (kd)?2. Since ¢ < m it follows
by minimality that ¢ = m and hence that d> = 1. This implies that d = 1.

To finish the proof, we need to show that the square-free decomposition of # is unique. To this
end, suppose that n = I2d, where d is square-free. We claim that any prime divisor of & is a prime
divisor of / and conversely that any prime divisor of / is a prime divisor of k. To see this, note that
for any prime p | k we have p? | k% and consequently p? | I?d. Since d is square-free, this implies
that p | 1% and hence that p | I. The same argument applies the other way around, so it follows that
k = [ and consequently m = d. O

Now that we have established that every natural number has a unique square-free decomposition,
we are able to give Erdds’s proof of the infinitude of primes. This proof was originally published in
[Erd1938].

Erdos’s proof of Theorem 11.2.2. Consider a finite list of primes py, ..., p,. We claim that for any
x, there are at most
Va2"

numbers below x with all prime factors from the list py, ..., p,. To see this, recall from Theo-
rem 11.2.4 that any number can be written in the form k?m where m is square free. Then we have
k < +/x, leaving at most /x choices for the number k. Furthermore, there are only 2" square-free

numbers m whose prime factors are from the list py, ..., p,, leaving at most 2" choices for the
value of m.
If all the numbers below x are products of powers of primes from the list py, ..., p,, we find

that x < 4/x2", or equivalently that

Vx < 2",
However, this inequality clearly fails when x exceeds 2%, so there must be primes other than
Pls---5Pn- O

11.2.4 A Proof via the Stars-and-Bars Method

The stars-and-bars problem asks in how many ways it is possible to place n — 1 bars between k stars.
In Figure 11.2 we displayed some example configurations for the stars-and-bars problem.

The stars-and-bars problem admits several equivalent formulations. For example, the stars-and-
bars problem is equivalently posed by asking in how many ways one can place k indistinguishable
balls in n distinguishable boxes. It is also equivalent to the problem of writing k as an ordered
sum of n natural numbers. The four example configurations of Figure 11.2 correspond to writing
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B b b Jb b &

* [ % ok k| ok |

* okl k ok [k

B b A b i ¢

Figure 11.2: Four example configurations with five stars and three bars.

5=0+3+2+0,5=1+3+1+4+0,5=2+0+2+1,and5 =0+ 2+ 2+ 1. Making use of
the Fundamental Theorem of Arithmetic, we find yet another equivalent way of formulating the
stars-and-bars problem: Given a set py, ..., p, primes, how many natural numbers are there of the
form

prt e,
so that my + - - - + m, = k7 We establish the answer in the following theorem.

k+n—1

™) natural

Theorem 11.2.5. Given a set py, ..., p, of n distinct primes, there are exactly (
numbers that can be written in the form

np

mi
pl ..-pn .
sothatmy +---+m, = k.

Proof. Since the primes p1, ..., p, are distinct, the Fundamental Theorem of Arithmetic implies
that distinct choices for (m1,...,m,) yield distinct natural numbers. Thus, we merely need to
determine in how many ways we can decompose k as an ordered sum of » natural numbers.

In order to do so, we claim that there is a bijection between the set of n-tuples (my,...,m,;)
satisfying m| + - - - + m, = k, and the set of (n — 1)-element subsets of the set {1,...,k +n —1}.
This bijection takes an n-tuple (my, ..., m,) to the subset

{my+1)+--+(m+1)]1<i<n}.

For example, the four 4-tuples corresponding to the configurations in Figure 11.2 are mapped to
3-element subsets of {1, ..., 8} as follows:

(0,3,2,0) — {1,5,8),
(1,3,1,0) — {2,6,8},
(2,0,2,1) - {3,4,7),
(0,2,2,1) — {1,4,7)}.
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Conversely, given an (n — 1)-element subset S = {s; < ... < s,_1}of {I,....k+n—1}, we
define s := 0 and s, := k + n in order to define m; := (s; — 1) — s;_ forall 1 <i < n. Then we
can compute the sum of the numbers m; as a telescopic sum:

n n
Zmi:Z(si_l_si_l) =(k+n)—n=k.
i=1 i=1

It is fairly immediate from these definitions that we have defined mutually inverse maps, so that we
have a bijection between n-tuples that sum to k and (n — 1)-element subsets of a (k + n — 1)-element
set. Since the number of such subsets is
k+n-1
n-17J

this completes the proof. O

Theorem 11.2.6. Given a set py, ..., p, of distinct primes, the set of numbers of the form

mj my
pl R

k+n

M ) elements.

such that my + ... + m, < k has exactly (

Proof. By the hockey-stick identity (Exercise 2.8), we have

L (i+n—1) (k+n)
S = (). g
=0 n— n
Proof of Theorem 11.2.2. Consider a set py, ..., p, of distinct primes, and let N be such that all

the numbers 1 < m < N can be written as a product of the primes p1, ..., p,.
For any m = p"' --- p,/* < N, we have

4 m < MogPLE -t mylogpy logm _logN

log2 ~ log2 ~ log2’

By Theorem 11.2.6 it follows that

log N (logN +n)n
N < Tog2 +n < log?2 .
B n - n!
Assuming that our initial list of primes includes all the primes below 12 so that n > 5, this inequality

fails for N > 2%". This shows that any finite set py, ..., p, of primes cannot be the set of all primes,
so there must be infinitely many primes. O
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11.3 Fermat Primes

During the 17th century, when computational resources were limited to human cognitive capacity
aided with pen and paper, it was a significant challenge to come up with large prime numbers. The
hunt for large primes was focused primes of the form 2" — 1 and 2" + 1, since such numbers have a
simple form yet grow very fast. Fermat observed that if 2" + 1 is a prime, then n cannot have any
odd divisors.

Theorem 11.3.1. If a number of the form 2" + 1 is prime, then n = 2* for some natural number k.

Proof. Write n = 2km, where m is odd. Recall that when m is odd, then we have the following
algebraic identity:

m—1
a"+b" = (a+b) Y (-1)db" !
i=0

By this formula for the sum of odd powers, we obtain the factorization

m—1
22m =¥y a1 =22 4 1) Z(—l)fzz"".
i=0
Thus, if 22 + 1 is prime, then we must have m = 1. o

In other words, all primes of the form 2" + 1 are in fact of the form 22" + 1. Such numbers are
called Fermat numbers: The nth Fermat number is given by

F,:=2%" +1.
The first few Fermat numbers are:
Fy =3, F, =5, P =17, F5 =257, F4 = 65537.

Of these numbers, Fj through F3 are easily seen to be prime. The number Fj is also prime, but to
prove this in a clean manner requires us to develop some more theory. Fermat famously conjectured
that all Fermat numbers are prime. Goldbach brought this claim to Euler’s attention in his letter,
who was sceptical. A little later, Euler was able to prove that F5s is indeed composite. Fermat had
an extremely strong record of correct mathematical claims and conjectures, but this was one of the
very few he got wrong. We will prove in Corollaries 13.1.5 and 13.1.6 that Fj is prime and that
F5 1s composite, once we have developed a bit more theory to help us reduce the search for prime
factors.

Our next proof of the infinitude of primes is due to Goldbach, from 1730. In the 18th century, it
was customary among mathematicians to share their findings private correspondences. In July of
1730, Goldbach wrote a letter to Euler, in which he established that all distinct Fermat numbers
are relatively prime, and that hence there must be infinitely many primes. Recall that the Fermat
numbers F,, are defined by

Fp:=2"+1.
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Theorem 11.3.2 (Product formula for the Fermat numbers). The nth Fermat number satisfies the

identity l_l
F,-2= Fy.
O<k<n

Proof. We will prove the claim by strong induction. In the base case, we have

Fo—2=2"_1=1= H i,
0<k<0

since the product on the right-hand side is empty.
For the inductive step, we use the formula for the difference of squares:

(Fpo1 =2)=2"" 1= +1D2¥ - 1) = F, - [TF=[] A O

0<k<n 0<k<n+l1

Theorem 11.3.3 (Goldbach’s Theorem). Any two distinct Fermat numbers are relatively prime.

Proof. Consider two distinct natural numbers m and n, and assume that m < n. Using the Product
formula of the Fermat numbers, we see that F,, | F,, — 2. It follows that any common divisor d
of F,,, and F,, is also a divisor of 2, i.e., d = 1 or d = 2. However, all Fermat numbers are clearly
odd, and this implies that any common divisor of F,,, and F,, is 1. In other words, F,, and F,, are
relatively prime. m|

Goldbach’s proof of Theorem 11.2.2. Since any two distinct Fermat numbers are relatively prime,
and since any number n > 1 has a prime divisor, it follows that if we pick a prime divisor of each
Fermat number F},, then we picked infinitely many distinct prime numbers. O

11.4 Legendre’s Formula and Kummer’s Theorem

In some cases we can give precise expressions of the prime factorization of a number. We will
describe here two such cases: The prime factorization of the factorial n!, which is due to Adrien-
Marie Legendre, and the prime factorization of the binomial coefficients (;’1), which is due to Ernst
Kummer. We will use a corollary to Kummer’s theorem in the proof of Bertrand’s Postulate.
Definition 11.4.1. The p-adic valuation of a positive integer n is the largest exponent m such that
p™ | n. That is, the p-adic valuation v, (n) of n satisfies the logical equivalence
k

|

piln = k <vp(n)

for every natural number k.

In other words, the p-adic valuation of n is the exponent of p in the prime factorization of n.
For example, the 2-adic valuation of 24 is v,(24) = 3 because the exponent of 2 in 24 = 23 - 3 is 3,
and its 3-adic valuation is v3(24) = 1 because the exponent of 3 in 23 - 3 is 1. On the other hand,
the 5-adic valuation of 24 is vs(24) = 0 since 24 is not divisible by 5. The 2-adic valuations of the
numbers up to 15 are displayed in Figure 11.3.
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v2(x)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X
Figure 11.3: The 2-adic valuations of the numbers up to 15.
Example 11.4.2. A useful application of p-adic valuations is that the p-adic valuation of the

greatest common divisor of two numbers is the minimum of their respective p-adic valuations.
More generally, if the greatest common divisor is taken of multiple natural numbers we obtain

vp(ged(ng, ..., ng)) =min(vy(ny),...,vy(ng)).
Likewise, the p-adic valuation of the least common multiple of ny, ..., ng is
vp(lem(ny, ..., ng)) = max(vy(ni), ..., vp(ng)).

For example the greatest common divisor and the least common multiple of 60 = 2> - 3 - 5 and
525=3-5%-7are

gcd(60,525) =3-5=15 and  lem(60,525) =2%-3-5%.7 = 2100.
An immediate consequence of the definition of p-adic valuations is the following proposition:
Proposition 11.4.3. For any two positive integes a and b, the following are equivalent:
(i) a|b.
(ii) v,(a) < v,(b) for every prime p.

Example 11.4.4. The prime factorization of 15! can be obtained by computing the prime factoriza-
tion of the numbers 1 through 15 individually, which are:

1,2,3,2%,5,2-3,7,23,32.2.5,11,22-3,13,2-7,3 - 5.

Thus, we obtain
15! =2"1.36.53.72.11.13,

Theorem 11.4.5 (Legendre’s formula). For any natural number n, we have

nt = np{%H%....

ps<n
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Proof. Another way of stating Legendre’s formula for n! is that the p-adic valuation of n! is given

by
| n
vp(nl!) = Z {—k| X
k=1 LP
To see this, note that each integer 1 < x < n divisible by p contributes a factor p to n!. Each integer
1 < x < n divisible by p? contributes a second factor of p to n!, and more generally, each integer
1 < x < n divisible by p* contributes a kth factor of p.
Since there are Lﬁj integers from 1 to n divisible by p¥, it follows that the number of factors

2l D

k=1

of pinn!is

Incidentally, Legendre’s formula can be used to give yet another proof of the infinitude of primes,
due to Junho Peter Whang [Wha2010].

Whang’s proof of Theorem 11.2.2. The p-adic valuation of n! is bounded from above by

-l S =5

k=1 k=1

Now suppose that 7 is a natural number so that all the primes below n are from the list py, ..., py,

and define ”
1
M = l_lpipi—l )

i=1

Then it follows from Legendre’s formula that
n! < M".

To give a quick lower bound for n!, note that for 1 < k < n we have n < k(n + 1 — k). This gives
the inequalities

n? <n!<M"
However, this inequality fails when n exceeds M?, so it follows that for n > M? there must be a
prime not in the list py, ..., py. m|

In the following theorem we give a useful alternative expression for the p-adic valuation of n!.

Theorem 11.4.6 (de Polignac’s formula). Consider a natural number n > 1 written in its base p

representation
/

D aip',
i=0
where we have 0 < a; < p for each i. Then p-adic valuation of n! is
/
n-— Zizo ai

1 =
vp(n!) o1
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Proof. Given the base-p representation of 7, the base-p representation of I_ﬁj is given by dropping
the digits first k digits in the base-p representation of n:

n_ I~k
| =4+ akap+---tap .
p

Using this observation, we obtain:

This gives

n- _,a; & i—1 &
j=0 ]_ ‘p _ l
p-1 _Za’p—l_z{pk* .

Example 11.4.7. We can use Legendre’s formula and de Polignac’s formula to compute the prime
factorizations of binomial coefficients. For example, it follows immediately from Legendre’s
formula that all the prime factors of the central binomial coefficient

[

are bounded from above by 64. Moreover, every prime 32 < p < 64 occurs with p-adic valuation
1. Furthermore, the central binomial coefficient (gg) is not divisible by any prime 332 < p < 32,

showing that the 23-, 29-, and 31-adic valuations of (gg) are 0. To compute the p-adic valuations
for the lower primes, we use de Polignac’s formula, for which it is necessary to write 32 and 64
in base p. Using letters A, B, C, and so forth for digits representing values of 10 and higher, we
gather all the calculations for de Polignac’s formula in the following table:

p | 32base p 64 base p w
2 | (100000), (1000000), 1
3 (1012)3 (2101)3 2
5 (112)s (224)5 0
7 (44); (121)7 2
11 (2A)n (591 1
13| (26)13 (4C)13 0
171 (1F)17 (3D)17 1
19| (1D (3719 1




11.4. LEGENDRE’S FORMULA AND KUMMER’S THEOREM 185

Thus, we see that

64
(32):2-32-72-11-17-19-37-41-43-47-53-59-61.

Even though the binomial coefficient (g;) is a fairly large number with 19 decimal digits, we didn’t
need to evaluate it in order to obtain its prime factorization. In fact, without fully evaluating it, we
can now determine the last decimal digit of (gg) by the following procedure: Start with dy := 1
and let d;;1 be the remainder of the product d; p:."i after division by 10, where p:."f is the ith prime

power in the prime factorization of (g‘;) This gives:
di=2,dr»=8,d3=2,ds=2, ..., di3=4.
The last decimal digit of ($;) is therefore a 4.

In the following theorem, which is due to Ernst Kummer [Kum1852], we will compute the
p-adic valuation of the binomial coefficients in full generality. Before we do this, we need to recall
addition of two natural numbers written in base p. Suppose that

~

m ln
m = Zaip’ and n= ) bip.
i= l=0

Then their sum m + n has base-p representation

In

m+n=Zc,~p’,

i=0

where ¢; is obtained by the following recursive procedure, simultaneously with a number u(m, n); €
{0, 1} recording whether a 1 needs to be carried over to the next digit: Set u(m, n)g = 0 and define

(a,‘+bi+u(m,n)i’0) ifa,-+b,-+u(m,n)t <Dp,

(ciru(m, n)ip1) = {

(aj + b +u(m,n); — p,1) ifa; +b; + u(m,n); > p.

Theorem 11.4.8 (Kummer’s Theorem). Consider two natural numbers m and n. The p-adic
valuation of the binomial coefficient (mr:") is the number of carries in the addition of m and n in
base p: If m and n have base p-representations

~

m

m :Zaipi and n:ibipi,

1= l=0
then

v,,(’"n: ”) —#{0<i<l,|u(mn)=1}.
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Proof. Write s, (x) for the sum of the digits of the p-adic representation of a natural number x. By
de Polignac’s formula for the p-adic valuation of (m + n)! we find that

vp(mn: n) =v,((m+n)!)—v,(m!)—v,(n!) =

sp(m) +sp(n) —s,(m + n)

p—1

The p-adic representation of m + n is given by

lm+n

m+n= Z cip's

i=0

where
a; + b; + u(m,n); if a; + b; + u(m, n); < p,
Ci =
l a; +b; +u(m,n); — p otherwise.

We therefore find that the numerator in de Polignac’s expression for v, ('"I;") contains a term

p — u(m,n);4 for every time u(m,n);+; = 1. That is, the numerator is of the form C(p — 1) where
C is the number of carries. This proves the theorem. O

Example 11.4.9. Consider two natural numbers m and n such that

m = Zkla,-zi and n-m= Zklb,-zi,
i=0 i=0

where 0 < a;, b; < 2 for every i. Then the binomial coefficient (:1) is odd if and only if a;b; = 0 for
every 0 < i < k, since only in this situation there are no carries when m and n are added in base 2.

Kummer’s theorem can be used to show that the binomial coefficient (Z) always divides the
least common multiple of 1,2, ..., n. In order to prove this result, note that the largest exponent m
such that p”* < n is the number

m = log, (n)].
In other words, if m is the largest integer not exceeding log ,(n), then the leading digit in the base-p
representation of n belongs to p™.

Corollary 11.4.10. For any 0 < k < n we have

(Z) ‘ lem(1,...,n).

Proof. Suppose that the base-p representation of n is

l
n= Z a; pi.
i=0
Then there are clearly at most / carries when we add k to n — k. Since p! < n, it follows that

2@ lem(1,....n).

Since this is true for every prime p < n, and (2) contains only prime divisors up to n, the claim
follows. =
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11.5 Bertrand’s Postulate

In 1845, Joseph Bertrand observed that for any 1 < n < 3,000, 000 there is always a prime between
n and 2n, and conjectured that this must be true for all n [Ber1845]. Nowadays on a computer, it
is really easy to generate lists of primes p; so that the prime p;; is strictly below 2p; for each i.
Taking each time the largest possible prime satisfying this requirement, we obtain the list

2, 3,5, 7, 13, 23, 43, 83, 163, 317, 631, 1259,
2503, 5003, 9973, 19937, 39869, 79699, 159389,
318751, 637499, 1274989, 2549951, 5099893, ....

The primes in this list are sometimes called the Bertrand primes, and they are listed as A006992
in the On-Line Encyclopedia of Integer Sequences [OEI2025]. Bertrand’s conjecture was proven
five years later by Pafnuty Chebyshev, who contributed many more results about the distribution of
the primes using analytical methods [Che1850]. We will give a proof by Paul Erdds [Erd1932],
which can be obtained through the methods of the previous section.

Lemma 11.5.1 (Chebyshev’s primorial bound). For any positive integer n, we have

np<4”.

ps<n

Proof. The proof is by induction on n. For n = 1, there are no primes p < 1, so the product over all
the primes p < 1 is just 1, which is indeed strictly below 4. Likewise, the theorem holds for n = 2,
because 2 < 4.

For the inductive step, assume that n > 2 and that [],., p < 4". In order to show that

1—[ p<4n+l,

p<n+l

there are two cases to consider: Either n + 1 is even or n + 1 is odd. The even case is immediate:

We have
1—[ p:np<4n<4"+l.

p<n+l p<n

In the odd case, there is an m such that 2m + 1 = n + 1. Since every prime m +2 < p <2m + 1

divides the binomial coefficient (2’7;1), it follows that

l_l < (2mm+ 1) . l_l b < (me+ 1)4m+1.

p<2m+1 p<m+1

2m+1

To finish the proof, it suffices to show that ( n

(2”;:1) and (2];":11) occur separately in the expansion of (1 + 1)2"*!. However, they are equal, so

neither of them can exceed %22’"” = 4" which proves the lemma. O

) < 4™ This follows, since the binomial coefficients
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Theorem 11.5.2. For any positive integer n, there is a prime n < p < 2n.

Proof. Consider an integer n > 2 for which there is no prime n < p < 2n, and let p be a prime

divisor of the central binomial coefficient (zn") Such a prime divisor must then be less than or equal

to 3n, since ¢>  (2n)! for any prime 3n < g < n, while ¢ | (n!)2.

Now, recall from Corollary 11.4.10 that any prime power p™ | (znn) must satisfy p” < 2n. In
particular, the number of primes p such that p? | (2:) is bound from above by the inequality

p < V2n.

This shows that there are at most V2n primes in the prime factorization of (Zn”), of which the
exponent is larger than 1. Furthermore, it follows that

[T »7CD < 2

P21

Combined with the fact that the prime factors of (2n”) don’t exceed 23—” we obtain the following

estimates: A )
2n+1<(n)§(2n) np<(2n) 47,
p<2n/3

Here, the first inequality was established in Exercise 2.6, and the last inequality follows from
Lemma 11.5.1. Rearranging this strict inequality, we obtain

45 < 2n+ H(2n) V" < 2(2n) V2141,

Taking logarithms base 2 on both sides, we find that

2
?” < (V2n + 1) log, (2n) + 1.

We see that this strict inequality fails for n > 2° = 512, since

210
34137<331:(25+1)-10+1.

We have thus proven that if there does not exist a prime n < p < 2n, then we must have p < 512.
However, using the Bertrand primes up to 631, we see that for every n < 512 there exists a prime
n < p < 2n. Thus Bertrand’s postulate is proven for all n. O
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Exercises

Starter Exercises

11.1 In the number grid provided at the end of the introduction, shade the numbered cells in two
colors:

(i) Leave all the prime numbers unshaded.
(i) Shade the number 1 and all square-free composite numbers in one color.
(ii1) Shade all non-square-free numbers in the other color.

Explain your method.

11.2 Find the first ten primes of the form n? + 1. The first of Laundau’s four open problems about
primes asks whether there are infinitely many such primes [Lan1912].

11.3 Find the first ten primes p such that 2p — 1 is also prime. It is unknown whether there are
infinitely many such primes.

11.4 Given a prime p > 3, show that p?> = 1 (mod 24).

11.5 By computing its prime factorization, show that

50
3
a’*=1 (mod p) ©® a==l (mod p).

Zn: i3 ‘ ﬁ i3
k=1 k=1

holds for every n, except when n + 1 is an odd prime.

is a square number.
11.6 Show that

11.7 Show that

Routine-Building Exercises

11.8 Find the longest arithmetic progression of primes under 1000. Hint: Use congruences to
constrain the step size.
11.9 Compute the prime factorizations of the following numbers:

(a) 5 - 1.
(b) 318 —1.
(c) 28 — 1.

11.10 Show that there are no primes p such that p + 8 and p + 22 are also prime.
11.11 A pair of twin primes is a pair of primes p and g such that ¢ — p = 2. Consider a pair of twin
primes p and g strictly greater than 3.
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(a) Show that p + g =0 (mod 12).
(b) Show that pg = —1 (mod 9).

11.12 A Sophie Germain prime is a prime p such that 2p + 1 is also prime. Show thatif p > 3isa
Sophie Germain prime, then

pR2p+1)=1 (mod 18).

11.13 (a) Show that any odd prime of the form x> + y?> must be congruent to 1 (mod 4), and
find the first ten primes of this form.
(b) Show that any prime p > 3 of the form x> + 3y must be congruent to 1 (mod 6), and
find the first ten primes of this form.
(c) Show that any prime p # 5 of the form x? + 5y? must satisfy

p=1lor9 (mod 20)

and find the first ten primes of this form.
(d) Show that any prime p of the form x? + 6y? must satisfy

p=lor7 (mod 24)

and find the first ten primes of this form.
The book [Cox1989] contains a beautiful exposition of the theory of primes of the form
x% + ny?, and serves as a wonderful introduction to class field theory.

)
k

for any O < k < p, and any prime number p.
11.15 Determine the number of trailing zeros in the decimal representations of 100! and 2101
11.16 (a) In Figure 11.3 we saw that v»((2* — 1)!) = 11. More generally, prove that

F-1
(Pt =1 =5

(o)) =
()10 = (51 ()
1G]

-k

(b) Show that

forany 0 < m < n.
11.17 Show that

11.18 (a) Show that

forevery 1 < k < 14.



EXERCISES 191
(b) Show that if p is a prime such that g = 2p — 1 is also a prime, then
2p ‘ 2p
2 2k

forevery 1 <k <p-1.
11.19 Show that

lcm(l, 2, Ce ,I’l) = eZPSnUng n| logp.
1120 (a) Show that
lem(l,...,n)
lem(1,...,m) [T 1] »
k>1 p prime
m<pk§n

Use this formula to conclude that

lem(1,...,n) _p ifn:pkforsomeprimepandkz1,
lem(1,...,n—=1) |1 otherwise.

(b) Show that
lem(1,...,n)

lem(1,...,m)

is square-free for every m < n such that n < 2m.
(¢) Show that
lem(1,...,n) ‘ (n)

lem(1,...,m) | \m)

for every m < n such that n < 2m.

Challenge Exercises

11.21 Show that for any prime p, if p? + 2 is prime then p + 2 is prime.

11.22 Consider n > 1. Prove that among any 2" integers all of whose prime factors are less than or
equal to n, there are two distinct integers such that their product is a square.

11.23 Consideraprime p =3 (mod 4), and suppose that v, (n) is odd. Show that there is a bijection
between the set of divisors d = 1 (mod 4) of n and the set of divisors d =3 (mod 4) of n.

11.24 For any n, let w(n) be the number of its prime divisors. Show that the number of integers
0 < x < nsuch that x2 = x (mod n) is 2°™_ Hint: Use the Chinese Remainder Theorem
to show that there is a bijection between the integers x such that x> = x (mod #) and the
subsets of the set of prime divisors of n.

11.25 Show that there is exactly one positive integer k such that both 2€ — 1 and 2% + 1 are prime.

11.26 In this exercise F}, denotes the nth Fibonacci number. Show that a prime p divides F),_ if
and only if p = £1 (mod 5) and p divides F, if and only if p = +2 (mod 5).
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11.27 Prove the following identity of Bakir Farhi [Far2009]:

1 n\ (n n _1cm(l,...,n+1)
([ )

11.28 Show that there are infinitely many numbers not divisible by any Fibonacci numbers other
than 1.
11.29 Use Bertrand’s Postulate to show that
1 1 1
+ +--- 4+
n+l n+2 2n

is never an integer.



Chapter 12

Multiplicative Functions

12.1 Perfect Numbers

The number 6 satisfies the curious property that the sum of its divisors 1 + 2 + 3 is equal to the
number 6 itself. This property of a number being equal to the sum of its own divisors, was deemed
so special in ancient times, that these numbers were called perfect.

Definition 12.1.1. A number 7 is said to be perfect if the sum of its divisors, including n itself, is
2n.

Euclid observed that if 2" — 1 is prime, then we can always find a number & such that
2k(2m - 1)

is perfect. Indeed, since the divisors of 2* are precisely the numbers 2/ with 0 < i < k, it follows
that the divisors of 2%(2™ — 1) are exactly

1, 2,..., 2%, and (2" -1), 22" -1),..., 2k@" -1).
The sum of the divisors of 2%(2” — 1) is thus
(2k+l _ 1) + (2k+1 _ 1)(2m _ 1) — (2k+1 _ 1)2m

The equation
(2k+1 _ 1)21’}1 — 2 . 2/((2111 _ 1)

now implies that m = k + 1. Thus we have proven the following proposition, which Euclid recorded
as Proposition 36 in Book IX of the Elements.

Proposition 12.1.2 (Euclid). If the number 2™ — 1 is prime, then 2"~1(2™ — 1) is perfect.

Using Euclid’s method, we can find the first few perfect numbers. Table 12.1 displays the prime
factorization of the number 2" — 1 for2 <m < 11.

193
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m |23 4 5 6 7 8 9 10 11
2"-1]3 7 3-5 31 3*.7 127 3-5-17 7-73 3-11-31 23-89

Table 12.1: The Mersenne numbers M,,, for2 < m < 11.

We see that M,, M3, Ms, and M7 are prime, and thus we obtain the following perfect numbers:

6=2'2%-1),
28 =2%2(2° - 1),
496 = 24(2° - 1),
8128 =26(27 - 1).
Prime numbers of the form M,, = 2" — 1 are called Mersenne primes, after Father Marin

Mersenne who studied them more deeply in the 17th century. An elementary property of Mersenne
primes is that if M,, is prime, then m must be prime.

Proposition 12.1.3. If the mth Mersenne number M,, = 2™ — 1 is prime, then m is prime.

Proof. We prove the contrapositive: If m is composite, so that m = ab for some a, b > 1, then M,,
is composite. This follows directly from the formula for the difference of powers:

b—-1
290 _ 1= (29 — 1P = (29 - 1) Z(z“)k. O
k=0

Mersenne numbers which are prime are called Mersenne primes. They are used in the search
for extremely large prime numbers. Note, however, that not every Mersenne number M, with p
prime is a prime number. For example, M1, = 23 - 89.

No perfect numbers other than the ones described by Euclid have been found, so it is natural
to wonder whether Euclid described all of them. This leads us to Euler, who was able to prove in
the 18th century that every even perfect number is of Euclid’s form. Euler did so by analyzing the
function o, which returns for each n the sum of its divisors. Euler’s proof marks the beginning of
the theory of arithmetic functions.

Definition 12.1.4. We define the sum-of-divisors function o by

o(n) = Z d.

dln

Thus, a number 7 is perfect if o(n) = 2n. Notice that a number 7 is prime if and only if
o (n) = n+ 1. The next easiest sum of divisors to calculate is the sum of divisors of a prime power.

For any prime p we have
m
my _ k:p
o(p )—k;p o1

m+1_1
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Indeed, d | p™ if and only if d = p* for some 0 < k < m, so the sum of the divisors of p™ is the
finite geometric series 1 + p + p> + --- + p™.

Proposition 12.1.5. Suppose m and n are relatively prime. Then
o(mn) = oc(m)o(n).

Proof. Consider a divisor d | mn. Since m and n are relatively prime, it follows that d =
gcd(d, m) ged(d, n). Thus we can assign to every divisor d | mn a pair of numbers (u, v) such that
u|m,v|n,and d = uv.

Conversely, if we start a pair («, v) of numbers such that u | m and v | n, then u = ged(uv, m)
and v = gcd(uv, n). This shows that the operation d — (gcd(d, m), ged(d, n)) is inverse to the
operation u, v — uv. Thus we obtain a bijection

{u|u|m}x{v|v|n}z{d|d|mn}

given by (u, v) +— uv. Using this bijection, we see that

I B :

ulm vin ulm vin dlmn

The multiplicative property of the sum-of-divisors function along with the expressions for
2.(p™) completely determine the values of the function o for any positive integer of which the
prime factorization is known.

Corollary 12.1.6. Suppose that n = p’l"' e pZ“C, where all the primes p; are distinct. Then

mi+1 1 my+1
- p -1
o(n) = P Lk
p1—1 pi—1

Example 12.1.7. We saw in Example 11.4.4 that 15! = 2!1.36.53.72. 11 . 13. It follows that

37-1 54—-1 73-1

o(15) = (2% -1)- 5 R 12-14=25-3%.5.72.132.19-1093.

Theorem 12.1.8 (Euclid—Euler). An even number n is perfect if and only if it is of the form
2r=lar 1)
for some prime p, where the number 2P — 1 is prime.

Proof. We have already seen that n is perfect if n = 27~1(27 — 1), provided that 27 — 1 is prime.
Furthermore, since the condition that 27 — 1 is prime implies that p is prime, and hence that 2P~! is
divisible by 2, it follows that numbers of the form 27~!(27 — 1) are even.
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For the converse, assume that n is an even perfect number, so that o-(n) = 2n. Using the 2-adic
decomposition, we can write n = 2¥m where m is odd. Since odd numbers are relatively prime to
powers of 2, it follows that

o(2m) = c(25Yo (m) = 2 = D)o (m).
By the assumption that 2¥m is perfect, we obtain that
QM Do (m) = 2 m.

Since the number s := 2%*! — [ is relatively prime to 2€*!, it follows that s | m. If we write m = st,
then the displayed equation simplifies to

o(m) =281 = (s + 1)t =1 + st.

Now observe that both ¢ and st are divisors of m. They are distinct, since n is assumed to be
even and thus we have s > 1. Since o (m) = t + st is the sum of all the divisors of m, it follows that
t and st are the only divisors of m. We conclude that # = 1 and s = m. Furthermore, we obtain that
o (m) = m + 1, which implies that m is prime. We have thus shown that

n= 2k(2k+1 _ l),

and that 2f*! — 1 is prime. This last property implies that k + 1 is prime, which completes the
proof. O

The Euclid—Euler theorem completely characterizes even perfect numbers. However, it doesn’t
tell us anything about odd perfect numbers. No odd perfect numbers have ever been found, and it is

conjectured that none exist. It has been shown that any odd perfect number must be greater than
101500-

12.2 Euler’s Totient Function

Before we introduce reduced residue systems, let us prove a lemma.

Lemma 12.2.1. Suppose that a = b (mod n). Then gcd(a,n) = gcd(b, n). Consequently, we
have gcd(a, n) = 1 if and only if gcd(b, n) = 1.

Proof. By the assumption that a and b are congruent modulo n, it follows that they have the
same remainder after division by n. Let r be this remainder. Since gcd(a,n) = gecd(r,n) and
gcd(b,n) = ged(r, n) we see that

gcd(a,n) = ged(b, n).

This equality implies that the left hand side equals 1 if and only if the right hand side equals 1. O
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By the previous lemma, we can test whether an integer is relatively prime to n by testing any
element in its congruence class. This allows us to make the following definition.

Definition 12.2.2. A reduced residue system modulo n is a set

{ri,....ri}

of integers satisfying the condition that for every integer a relatively prime to n, there is exactly one
index 1 <i < k such that
a=r; (mod n).

Corollary 12.2.3. Any two reduced residue systems modulo n have the same size, for which we
write ¢(n). The function ¢ is called Euler’s totient function.

Proof. Reduced residue systems are choices of representatives of the congruence classes in which
all elements are relatively prime to n. Thus, the size of a reduced residue system is always equal to
the number of such congruence classes. O

Theorem 12.2.4. Euler’s totient function ¢ is multiplicative: For any two relatively prime numbers
m and n we have

¢(mn) = p(m)¢(n).

Proof. We prove the claim by a counting argument: We claim that the bijection of the Chinese
Remainder Theorem
{0<x<mn}={0<a<m}x{0<b<n},

given by x — (x (mod m),x (mod n)), restricts to a bijection
{0<x<mn|ged(x,mn) =1} =2{0<a<m]|ged(a,m) =1} x{0<b <n|ged(b,n) =1}.

To see this, note that x is relatively prime to a number & if and only if x (mod k) is relatively prime
to k. Thus, we have to show that

ged(x,mn) =1 & ged(x,m) =1 and ged(x,n) = 1.

For the forward direction, suppose that gcd(x, mn) = 1. In this case, any d dividing both x and m
is also a common divisor of x and mn so it must be 1. Thus it is clear that if gcd(x, mn) = 1, then
gced(x, m) = ged(x,n) = 1.

For the converse, suppose that gcd(x, m) = gcd(x,n) = 1, and suppose that d | x and d | mn.
Since m and n are relatively prime, we can uniquely determine two numbers a and b satisfying
d = ab, such that a | m and b | n. For these numbers, we obtain that a | gcd(x,m) = 1 and
b | gcd(x,n) = 1 so that both a = 1 and b = 1. This shows that d = 1. O

Since multiplicative functions are fully determined by their values on prime powers, we obtain
the following important expression for Euler’s totient function.
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2k Fermat primes {n | ¢(n) = 2¥}

1 (1,2}

2 3 (3,4,6}

4 3,5 (5,8, 10, 12}

8 3,5 {15, 16,20, 24, 30}

16 3,517 {17, 32,34, 40, 48, 60}

32 3,517 {51, 64,68,80,96, 102, 120}

64 3,517 (85, 128, 136, 160, 170, 192, 204, 240}

128 3,5,17 {255,256, 272, 320, 340, 384, 408, 480, 510}

Table 12.2: Lists of numbers n for which ¢(n) = 2K

Theorem 12.2.5. Consider a positive integer n with prime factorization n = p'lﬂ‘ e p':". Then

k k
o0 = [ | =p " =n] | (1 ) 1%) ‘
i=1 !

i=1
Corollary 12.2.6. The value ¢(n) of Euler’s totient function is even for n > 2.

Proof. For k > 2 we have ¢(2%) = 2¥~1, which is even. Furthermore, every odd prime factor p
contributes an even factor p — 1 to ¢(n). O

Since ¢(p*) = p*~1(p — 1), it follows that if k < [, then ¢(p*) | ¢(p'). Since Euler’s totient
function is multiplicative by theorem:multiplicative-totient, we obtain the following corollary:

Corollary 12.2.7. The function n — ¢(n) is a divisibility sequence: For any two natural numbers
m and n, we have

mln = ¢(m)|¢n).

Example 12.2.8. We will use Theorem 12.2.5 to determine all n for which ¢(n) = 2* for some «.

If p is an odd prime so that p® — p?~! = p9~1(p = 1) is a power of 2, then it follows that
a — 1 = 0. In other words, in order for p* — p®~! to be a power of 2, we must have a = 1. This
shows that if ¢(n) is a power of 2, then n must be of the form

n=2“]_[p,

peS

where S is a subset of the Fermat primes; that is, every prime in S is the form 2 + 1. The only
known such primes are
3,5, 17, 257, and 65537.

We conclude that the only numbers n for which ¢(n) = 4 are 5, 8, 10, and 12, and the only numbers
n for which ¢(n) = 8 are 15, 16, 20, 24, and 30. Table 12.2 lists the numbers n for which ¢(n) = 2*
up to 2K = 128.
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12.3 Multiplicative Functions

A function f defined on the positive integers with output in any number system, such as the integers,
real numbers, or complex numbers, is called an arithmetic function. For example, Euler’s totient
function ¢, which returns for each n the number of elements 0 < k& < n relatively prime to n, is
an arithmetic function. Some other important arithmetic functions include the number of divisors
function T and the sum of divisors function o :

7(n) = Z 1 and o(n):= Z d.

dln dln

Note that the number of divisors and the sum of divisors are not defined for n = 0. Arithmetic
functions are typically only defined on the positive integers {1, 2, 3, ...}. Even for functions which
are defined on 0, such as Euler’s totient function, when we consider them as arithmetic functions
we will consider their domain of definition to be the positive integers.

Other functions, which are worth naming are the constant function n — 1, which we will simply
denote by 1, and the identity function n — n, which we will denote by id. In the pages that follow,
we shall encounter two more arithmetic functions: the unit function & and the Mobius function .

Definition 12.3.1. An arithmetic function f is said to be multiplicative if for any two relatively
prime natural numbers m and n we have

f(mn) = f(m)f(n).
Proposition 12.3.2. If f is a nonzero multiplicative function, then f(1) = 1.

Proof. Since f is assumed to be nonzero, there is a natural number n such that f(n) # 0. Thus,

f(n) = f(1n) = f(1)f(n)

by the assumption that f is multiplicative. Since multiplication by a nonzero number is injective, it
follows that f(1) = 1. O

It follows that the constant function 1 is the only constant multiplicative function. By the
following proposition, we see that any multiplicative function is determined by its values on prime
powers.

Proposition 12.3.3. If f is a multiplicative function and n = pi" ---p"*, where the primes

P1,- .., Pk are distinct, then

fn) = f(pi") - f(p7H).

Proof. Since the primes pq, ..., p; are assumed to be distinct, it follows that the prime powers
pT ., p':" are pairwise relatively prime, hence the claim follows by induction on k. O

The following theorem provides a useful way of proving that a function is multiplicative.
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Theorem 12.3.4. Suppose f is a multiplicative function, and define the function F by

F(n) := Zf(d).

dln

Proof. Consider two relatively prime natural numbers m and n. Then there is a bijection (¢, d) — cd
from the set
{c | c divides m} x {d | d divides n}

to the set of divisors of mn. For the inverse function, define the function
e — (gcd(e,m), ged(e, n)),

which sends a divisor e of mn to a pair of divisors of m and n. To see that this is indeed an inverse,
note that if ¢ | m and d | n, then gcd(d, m) = 1 so that

¢ = gcd(ed, m).
Similarly, we have that gcd(c, n) = 1 so that d = ged(cd, n). This shows that
(c,d) = (ged(ed, m), ged(cd, n)).

We also have to show that gcd(e, m) gcd(e, n) = e for any divisor e of mn. Write ¢ = ged(e, m)
and d = gcd(e, n). Since ¢ and d are relatively prime and since both are divisors of e, it follows
that cd | e. Now, suppose that kcd = e. Since gcd(kcd, m) = c it follows that gcd(k,m) = 1.
Similarly, gcd(k, n) = 1. However, if p is any prime divisor of k, which divides mn, it follows that
p | mor p | n. Since this is impossible, it follows that £ = 1. This completes the proof that the
map (c, d) — cd is a bijection.

Using this bijection, we find that

F(mn)= )" f(e)= )] > flcd)

elmn clm din
=Y D F@f(@) =) f(e) Y f(d) = F(m)F(n). o
clm dln clm dn

Theorem 12.3.5. The functions T and o are multiplicative.

Proof. The functions 7 and o are defined by

7(n) := Z 1, and o(n) = Z d.

dln dln

Clearly the constant function n + 1 and the identity function n + n are multiplicative, so it follows
from Theorem 12.3.4 that 7 and o are multiplicative. O
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The previous theorem implies that if n = p'' - -- p',:”‘ is a product of distinct primes, then

k m1+1_1

k
t)=[Jm+1,  and o =] p’p_—l
i=1 =1 L

Indeed, for any prime power p™, the divisors of p” are the prime powers p’ where 0 < i < m. There
are m + 1 powers of p in this range, and their sum is computed by the formula for the geometric

series
m+1 _ 1

1+p+---+p’”:p

p—1
Remark 12.3.6. Many identities of arithmetic functions involve reindexing double sums such as in
the proof of Theorem 12.3.4. Another reindexing identity that is occasionally helpful is:

DD fledy= D) f(de,d).

cln d|c dln el

12.4 The Mobius Function
Definition 12.4.1. The Mobius function u is defined by

(—=1)* if n is the product of k distinct primes,
u(n) = o |
0 if p~ | n for some prime p.

For example, u(3 - 7 - 17°) = 0 because the input is divisible by 172. On the other hand,
1(3-7-17) = (=1)% = —1 because the input is the product of three distinct primes. The following
table lists the values of u(n) for the first 15 natural numbers

n |01 2 3 4 5 6 7 89 10 11 12 13 14
pm)|O 1 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1

It is immediate from the definition that the Mobius function is multiplicative. We will give two
proofs of the following theorem: a combinatorial and an arithmetic proof.

Theorem 12.4.2. The Moébius function is multiplicative, and it satisfies

D u(d) = £(n).

dln

In other words, u =1 = .
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Combinatorial proof. 1t is clear that the formula holds for n = 1. For n > 1, we prove the formula
by showing that there is a bijection

{dn|ud) =1} ={d|n|ud) =-1}

To describe such a bijection, let p | n be a prime divisor of n, and define the map on a square-free

divisor of n by
pd ifptd
0p(d) := d .

In other words, 6, is defined by “toggling” the prime p in a square-free divisor d of n. Note that
6, (d) is again square-free, and that

p(Op(d)) = —u(d).

Furthermore, the equality 6,(6,(d)) = d holds for every d, so we conclude that 6, defines a
bijection between the set of divisors d of n such that u(d) = 1 and the set of divisors d of n such
that u(d) = —1. O

Arithmetic proof. Likewise, the arithmetic function

F(n) = ) n(d)

dln

is multiplicative by Theorem 12.3.4. Since multiplicative functions are completely determined by
their values on prime powers, and ¢ is the multiplicative function given by

g(n):{1 ifn=1

0 otherwise,

it suffices to show that F(p*) = 0 for any k > 1. To see this, we simply evaluate

D u(p*) = p(pY) +p(ph) +0=1-1=0. O
d|p*

Remark 12.4.3. The previous theorem could be viewed as a recurrence relation that is satisfied by
the Mobius function:
p(n) = - Z u(d)
dln
d#n
Gian-Carlo Rota used this perspective to make the theory of arithmetic functions and the M&bius
function applicable to a wide class of partially ordered sets [Rot1964].
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12.5 Dirichlet Convolution

The set of arithmetic functions with values taken in a fixed, chosen number system such as the
integers, the real numbers, or the complex numbers, possesses an interesting algebraic structure
that can be used effectively to obtain many algebraic results and identities about numbers. The
most important operation on arithmetic functions is Dirichlet convolution, a way of combining two
arithmetic functions f and g into a new arithmetic function f * g.

Definition 12.5.1. Consider two arithmetic functions f and g. We define their Dirichlet convolution
fxghby ;
(fr8)m) = ) fd)g ().

dln

Theorem 12.5.2. Dirichlet convolution is associative and commutative, meaning that
(fxg)xh=fx(gxh), and  fxg=gxf,
respectively.
Proof. Another way of writing the Dirichlet convolution of f and g is
(fre)n) = > Fe)g(d).
°,d
C(a:n

Since this expression is symmetric in f and g, we see immediately that the Dirichlet convolution
is commutative. Furthermore, to see that the Dirichlet convolution is associative we make the
following calculation:

((f *g) *h)(n)

D (f # @) (0)h(d)
c,d

cd=n

= Y. > fla)g(b)h(d)

c,d a,b
cd=n ab=c

= > Fla)g(b)h(d)
a,b,d
abd=n

= > ). fl@)g(b)h(d)
b,d

a,e ,
4=l pd=¢

= > fla)(gxh)(e)

B
ae=n

(f = (g *h)(n). O
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Theorem 12.5.3. Let € be the function given by

1 1 ifn=1
gn):=|—-|= .
n 0 otherwise.

Then e * f = f and f * € = f for any arithmetic function f.
Proof. Consider an arithmetic function f. Then
n
(& ) (n) = dzmje(d)f () = ron.

since the only term contributing to the sumis d = 1. The fact that f*xe = f follows by commutativity
of the Dirichlet convolution. O

12.6 Dirichlet Inverses

Definition 12.6.1. Consider an arithmetic function f such that f(1) is nonzero. Then we define
the Dirichlet inverse f~' of f by

(1) = L Ty = =N g (B
F) = sy and f(n)—f(l)dzh;f (d)f(d) (forn > 1),

d#n

Theorem 12.6.2. For every arithmetic function f such that f (1) is nonzero, the arithmetic function
f~Vis the inverse of f with respect to Dirichlet involution, in the sense that

flef=e¢ and fxfl=e¢.
Furthermore, f~ is the unique such arithmetic function.

Proof. To show that (f * f~1)(n) = &(n) for every n > 1, there are two cases to consider. In the
case where n = 1, we have
_ _ 1
(F=f DW= = fF)—=

I70) =1=¢(l).

In the case where n > 1, we have

_ 1 (n _ 1 (n
(FfHm =Y f@f ™ (5) = rrtm+ Y s (5).
dln dln
d#n
which is 0 by the definition of f~'. This completes the proof that f * f~! = £. The equality
f~!% f = & follows by commutativity of Dirichlet convolution.
Uniqueness of the inverse follows from a purely algebraic argument. Suppose that g is another
arithmetic function such that f % g = £. Then we obtain

flh=ftee=fx(fre)=(f*f)rg=exg=¢g. O
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Example 12.6.3. The Dirichlet inverse of the constant function 1 is the Mdbius function u. Indeed,
we saw in Theorem 12.4.2 that u = 1 = &.

Remark 12.6.4. If f~! = g for some arithmetic functions f and g, then it follows that g~' = f.
Indeed, the equations

frxg=¢ and gxf=¢
simultaneously imply that g is the inverse of f and f is the inverse of g. Thus we have that 1~! =
and ! = 1.

Theorem 12.6.5 (The Mobius Inversion Formula). Consider two arithmetic functions f and g.
Then we have

s =Y f@) e fm=) udg(3).

dln d|n
In other words, if g =1 % f then f = u * g.
Proof. If g =1 f, then
pxg=px(1xf)
= (ux1)x f

=exf
:f.

Conversely, if f = u * g, then
L f=1x(uxg)
=(Lxp)*g

:8*g

=g. i

Corollary 12.6.6. Euler’s totient function satisfies the identity

o(n) = ) u(d)

dln
In other words, ¢ = u = id.

Proof. By Theorem 17.1.1 we have id = 1 * ¢, so we have ¢ = u = id by the Mobius inversion
formula. m|

We also give a direct proof of Corollary 12.6.6, offering a second perspective on the totient
function.
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Direct proof of Corollary 12.6.6. Note that Euler’s totient function ¢ can be written in the form

§ 1
pm = ,Zf {gcd(k,n)| '

Then it follows from Theorem 12.4.2 that

n

pmy=> > uld)= ZZu(d) = ZZu(d) = D u(d)=.

k=1 d|gcd(k,n) =1 djn dln k din
dlk

The last step follows, since there are exactly 7 multiples of d among the numbers from 1 ton. O
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Exercises

Starter Exercises

12.1 Compute ¢(n) forn=1,...,12.
12.2 Show that the number 7(7n) of divisors of n is odd if and only if 7 is a square number.
12.3 Compute u * 0.

Routine-Building Exercises

12.4 Let M,, := 2" — 1 be the nth Mersenne number.

(a) Show that if n is even, then 3 | M,,.
(b) Show thatif 3 | n, then 7 | M,,.

12.5 Show that any Mersenne prime M, = 27 — 1 with p an odd prime satisfies the congruence
M, =7 (mod 24).

12.6 Suppose that p is an odd prime, and that g is a prime divisor of the Mersenne number
M, = 2P — 1. Show that
g =1 (mod 2p).

Hint: Apply the Order Theorem.
12.7 (a) Show that
o) op")yeom+1|n+1.

(b) Letd :=gcd(m + 1,n + 1). Show that

ged(or(p™), o (p") = o (p?7h).

12.8 (a) Prove that if gcd(a, b) = d, then

dg(a)p(b)

¢(ab) = 5(d)

(b) For any n > 1, prove that

> ="

a<n
gcd(a,n)=1

12.9 Prove that there is no positive integer n < 2% such that ¢(n) = 254,
12.10 For any d | ¢(n) such that d > 2, prove that

1_[ x=1 (mod n).

O<x<n
ord, (x)=d
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12.11 (a) Show that

$(n) =1 (mod 2)
2
if and only if
n=4, or n:pk, or n:2pk,
where p =3 (mod 4) is a prime.
(b) Show that
¢(n) =1 (mod 4)
2
if and only if
n =4, or n:pk, or n:2pk,

where either p =3 (mod 8) and k isodd or p =7 (mod 8) and k is even.
12.12 Compute pu * p.
12.13 Prove that

2, ged(k, mypu(ged(k,m) = u(n).
k=1

12.14 (a) Show that if two out of three arithmetic functions f, g, and f * g are multiplicative,
then so is the third.
(b) Show that if f is an arithmetic function such that f (1) is nonzero, then f is multiplicative
if and only if £~! is multiplicative.
12.15 Let f be a multiplicative function.

(a) Show that
) = u(n) f(n)

for every square-free natural number n.
(b) Show that

fip)y=-f(p) and  f1(pH = f(p*) - f(p)*

for every prime number p.
(c) Show that

Ffe™m =) D4 >0 e fM) |
k=1 i1+ +ig=m

[y >3 |

12.16 Consider a prime p. Show that

¢(p-1)

a(ord,(ay) (04 P)-

a" = p(ord,(a))
O<n<p-1
ged(n,p—1)=1
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12.17 Write R, (k) for the number of integers 0 < x < n such that
=1 (mod n).

(a) Show that the function n — R, (k) is multiplicative, for each k > 0.
(b) Show that the number of integers O < x < n of order k is given by the quantity

Ay = Y (&) Rath).

dlk

Challenge Exercises

12.18 Determine the number of reduced fractions %, where 0 <a < b <n.
12.19 Consider the nth Fermat number F, = 22" + 1 and the mth Mersenne number M,, = 2" — 1.

Show that

F, if2™!|m,
ng(Fn, Mm) = .
1 otherwise.

12.20 For any two natural numbers 0 < d < n, determine the number of ordered pairs (a, b) of
nonnegative integers a and b such that @ + b = n and ged(a, b) = d.
12.21 For how many congruence classes » (mod n) is the linear congruence

ax =b (mod n)

solvable?
12.22 (a) Find all primes p and exponents m such that

(b) Find all primes p and exponents m such that
) (1%) = 1.
(c) (Euler) Show that if # is an odd perfect number, then 7 is of the form
pem?
where p is a prime such that p = @ =1 (mod 4) and p { m.

12.23 Show that
vp(29-1)+v,(n/d)+1 _ 1

c2-n= [] £ P

p odd prime
d:=ord, (2)|n
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12.24 Define Jordan’s totient function Ji(n) by
Ji(n) =#{(x1,...,xx) | 1 <xq,...,x, <mnand ged(xy,...,xk,n) =1}

In other words, Jordan’s totient function counts the number of k-tuples (x, . . ., x) of positive
integers not exceeding n such that if d simultaneously divides all the integers xi, . . ., x; and
n, then d = 1. Note that J;(n) is just Euler’s totient function ¢.

(a) Find J5(n) for1 <n < 12.
(b) Show that for any divisor d of n, the number of elements in the set

{(xl,...,xk) ‘l <Xx1,...,xr <nmand ged(xy,...,x5,n) = g}

is exactly Ji (d).

(c¢) Show that ’
Shd=n* ad Y ) (g) = Ji(n).

dln dln

(d) Show that J is a multiplicative function.
(e) Show that

Je(p™) = p*m = p*n Y

for any prime p and any exponent m > 1.

(f) Show that
1
Jk(l’l):nkl |(1—F)

pln
12.25 Let € be the arithmetic function given by

Q(m)=mi+---+my,

forany m = p'' - -- pj,"", where the prime factors py, . .., p, are assumed to be distinct. Thus,
Q returns the number of prime factors, counted with multiplicity. Show that

logm

log (% er'lzl pi)

Q(m) <

Hint: Use Jensen’s inequality.
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Chapter 13

Fermat’s Little Theorem and its Consequences

13.1 Fermat’s Little Theorem

Theorem 13.1.1 (Fermat’s Little Theorem). Consider a prime number p and an integer a. Then
the congruence
a? =a (mod p)

holds.

Remark 13.1.2. Note that the congruence (—a)? = —a” (mod p) holds for all primes p, so it
suffices to prove the claim for the nonnegative integers.

Fermat’s additive proof. This proof is by induction on a. The base case 0”7 =0 (mod p) clearly
holds.
For the inductive step, assume that a” = a (mod p). The Binomial Theorem then gives us that

p
P\ k
P —
@+ => ( k)a

k=0

However, note that p | (¥) for any 0 < k < p. We therefore find that
(a+ 1)’ =a” +1 (mod p).
Since a” = a (mod p) holds by the induction hypothesis, the claim follows. O
Golomb’s combinatorial proof [Gol1956]. Consider a set A with a elements, and a cyclic set C
with p elements. There are a” functions from C to A. Each such function f : C — A can be
viewed as a labelling of each of the elements of C by an element of A.
Since the set C is cyclically ordered, it is natural to consider two such labellings equivalent if

one can be obtained from the other by rotating the cyclic set C. We indicated this equivalence in
Figure 13.1. We claim that the number of functions that are equivalent to a labelling f is always a

213
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L@ L@
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Figure 13.1: In Golomb’s proof of Fermat’s Little Theorem, two labellings of a cyclic set C with elements
from a set A are considered the same—or equivalent—if one can be obtained from the other by rotation.

divisor of the number of elements of C, which is p. Indeed, if s : C — C is the one-step rotation,
then the number of functions equivalent to f is equal to the least positive integer k such that

fost=r.

Moreover, since s” is the identity on C, we always have f o s = f, and therefore k | p. By the
assumption that p is prime, there are two possibilities:

(i) In the first case, f is the only function equivalent to itself. This is the case if and only if f is
constant.

(i1) In the second case, there are exactly p functions equivalent to f, including f itself. This is
the case if and only if f is nonconstant.

Now note that the number of constant functions from C to A is exactly a. The number of nonconstant
functions is therefore a” — a. Since the nonconstant functions are partitioned into equivalence
classes of size p, it follows that a” — a is divisible by p. O

Corollary 13.1.3. Consider a prime number p and an integer a not divisible by p. Then the
congruence
a’"!'=1 (mod p)

holds.

Proof. Since a is not divisible by p, it follows that a is relatively prime to p, and therefore the
claim follows from the cancellation law

ax = ay (mod p) = x=y (mod p). O
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Fermat’s Little Theorem can be used to analyze the prime divisors of special numbers such as
Fermat numbers or Mersenne numbers. Regarding Fermat numbers, we have the following theorem,
which is of great help when trying to prove or disprove that a Fermat number is prime.

Theorem 13.1.4. If p is a prime divisor of a Fermat number F,, := 2" + 1, then
p=1 (mod 2””).

Proof. If p is a prime divisor of 22" + 1, then it follows that
2" = -1 (mod p).

This implies via the that ord,(2) | 2"*1 In particular, ord,(2) = 2% for some number k < n + 1.
However, note that

22 = (mod p) implies 22 = (22]()2 =1 (mod p).

Since 22" = -1 (mod p), it follows that the order of 2 modulo p cannot divide 2. Thus, it follows
that ord, (2) = 27+ By Fermat’s Little Theorem, we conclude that

2 p— 1. 0

Corollary 13.1.5. The fourth Fermat number 22" 41 =65537 is prime.

Proof. Any prime divisor of F4 = 22" + 1 must satisfy the congruence p = 1 (mod 33). If Fy is
composite, then it must have a prime divisor below vFy4, and thus below 28 = 256. The sieve of
Eratosthenes displayed in Figure 11.1 reveals that the only two primes p = 1 (mod 33) below 256
are 97 and 193. A quick computation gives that

F4 =62 (mod 97) and F4 =110 (mod 193),
so that neither 97 nor 193 is a prime divisor of F4, and therefore we conclude that Fy is prime. O

Corollary 13.1.6. The fifth Fermat number 2241 = 4,294,967, 297 is composite, and its smallest
prime factor is 641.

Proof. By Theorem 13.1.4 it follows that any prime divisor of 22 + 1 must satisfy
p=1 (mod 26) .
The prime numbers of the form 64k + 1 below one thousand are 193, 257, 449, 577, and 641, as

can be read off of Figure 11.1. We will prove that 193, 257, 449, and 577 do not divide F5, and that
641 does.
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(i) First, we note that 3 -2% = —1 (mod 193), which implies that

=-27% (mod 193).
A quick computation shows that 3% = 9, 3* =81 =26 +2*+ 1, and 3% = 6561 = 34-193 - 1,
so that

38 = -1 (mod 193)
and thus ord;g3(3) = 16. It follows that

1=3"%=(=2)%1=2% (mod 193),

which allows us to conclude that ordjg3(2) | 96. Now observe that if 193 | F5 so that
232 = —1 (mod 193), then we’d have ord;93(2) = 64 1 96, a contradiction.

(i1) Note that 257 is itself a Fermat number. In Goldbach’s Theorem we showed that any two
distinct Fermat numbers are relatively prime, so that 257 { F5s.

(iii) To show that 449 4 23 + 1, we will simply compute 232 (mod 449). Note that 2° =
26— 1 (mod 449). This allows us to compute

216 =27(26 - 1)

=213 _ 97
=2420-1) -2’

=2(20-1)-27-2%

= -2% -2 (mod 449).
It follows that 232 = (-2* — 2)% = 28 + 20 + 22 = 324 (mod 449), so we see that 232 #
—1 (mod 449).

(iv) Here we note that2? = —(26+1) (mod 577). By a similar calculation as above, we compute
that

232 = 28 25 -2 =287 (mod 577).
Since 22 £ —1 (mod 577), it follows that 577 1 Fs.
(v) Finally, we prove that 641 | Fs. Euler’s insight was that 641 = 5* + 24, so that
5% = -2* (mod 641).
Furthermore, we have 641 = 5-27 + 1, so that 5= =277 (mod 641). It follows that
232 =04 274 = 5. 27 = _(5.2")* = —(-1)* = -1 (mod 641).
We conclude that 641 | 232 + 1. O

Remark 13.1.7. Edouard Lucas showed that any prime divisor p | F, of the nth Fermat number F,,
where 7 > 2, must in fact be of the form k2"*2 + 1. Had Euler known this stronger restriction on the
prime divisors of the Fermat numbers, he wouldn’t even have to cover the cases 193, 449, and 577!
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13.2 Euler’s Theorem

Euler figured out a way to generalize Fermat’s Little Theorem to the composite moduli. He made
use of his totient function ¢, which counts for each n the number of 0 < m < n relatively prime to n.

Theorem 13.2.1 (Euler’s Theorem). Consider a natural number n and an integer a such that
gcd(a,n) = 1. The congruence

a®™ =1 (mod n)
holds

We present two proofs of Euler’s Theorem. The first is the standard proof, and the other is
inspired by methods of group theory.

First proof of Euler’s Theorem. Consider an integer a relatively prime to n, and consider a reduced
residue system ry, . .., rg(,) modulo n. We claim that

ary,...,argy)

is again a reduced residue system modulo n. Indeed, since multiplying by a induces a bijection
on Z/nZ, we see that all integers ary, . . ., ar(p) are incongruent. Furthermore, the product of any
two integers relatively prime to n is again relatively prime to 7, so all the integers ar; are relatively
prime to n. Since any set of ¢(n) incongruent integers relatively prime to n form a reduced residue
system, the claim follows.

Using that the integers ary, . . ., arg(,) form a reduced residue system, it follows that
$(n) $(n) #(n)
l_[ ri = 1—[ ar; = a®" n r; (mod n)
i=1 i=1 i=1
Since I—[?:(Il) ri is relatively prime to n, it follows that a®"™ = 1 (mod n). O

Second proof of Euler’s Theorem. Consider the least positive integer k such that a* = 1 (mod n),
and consider the relation ~ on the set of integers 0 < b < n relatively prime to n, where

b~c ifandonlyif  Focba' =c (mod n).

This relation is reflexive, because ba® = b (mod n). It is symmetric, because if ba’ = ¢ (mod n)
for some nonzero i, then ca*™ = ba'a* = b (mod n). Furthermore, it is transitive, because if
ba' = ¢ and ca’ = d, then ba'*/ = d. If k < i + j, then we find that also ba'*/~* = d. Thus, the
relation ~ is an equivalence relation.

We claim that each equivalence class has size k. Indeed, for each b, the set

{b,ba,bd?,... ba*""}

consists of k distinct elements, because multiplying with b is a bijection. Thus we have partitioned
the set of all numbers 0 < b < n relatively prime to » into equivalence classes of size k. On the
other hand, the total number of elements 0 < b < n relatively prime to #n is the number ¢(n). This
shows that k | ¢(n), so it follows that a?™ =1 (mod n). o
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Remark 13.2.2. The second proof of Euler’s theorem can be simplified using the language of group
theory. A group is a set G equipped with a binary operation x, y — xy, a unary operation x — x !,
and a unit element 1, satisfying the axioms

(xy)z = x(yz)

xl=x
Ix =x
=1
xx=1.

One can show that the set of integers modulo 7 relatively prime to n forms a group, where the binary
operation is multiplication, the unit element is the integer 1, and the inverse x~! of an integer x
modulo 7 is the unique solution to the equation xy = 1 (mod 7). The number of elements in this
group is ¢(n). For any integer @ modulo 7 relatively prime to z such that a* = 1 (mod n), the set
{1,a,a?,...,a" '} is a subgroup, which means that it is closed under the group operations. The
argument where we introduced an equivalence relation ~ to partition the set of all integers modulo
n relatively prime to n into equivalence classes of size k is an instance of a much more general
result, Lagrange’s Theorem, which asserts that the size of any subgroup of a finite group divides
the size of the entire group.

Since ¢(p) = p — 1, it follows that Fermat’s Little Theorem is also a direct corollary of Euler’s
Theorem.

Remark 13.2.3. We saw the multiplicative order featuring in the second proof of Euler’s Theorem.
Thus, using the second proof of Euler’s theorem we immediately observe that

ord,(a) | ¢(n),
for any @ and n such that gcd(a, n) = 1.

Some questions about Euler’s totient function remain unresolved. While we have seen that
¢(p) = p — 1 for any prime number p, Lehmer asked whether there is any composite number n
such that

¢(n) | n—1.

This open problem is now known as Lehmer’s problem [Leh1933].

13.3 Wilson’s Theorem

The following theorem was first published by Edward Waring, who attributed it as follows to John
Wilson [War1782, p. 380] along with high praise: This most elegant property of prime numbers was
discovered by the most illustrious and most skilled mathematician, John Wilson, Esquire. However,
neither Wilson nor Waring were able to rigorously prove this property of the prime numbers. The
first to give a proof was Joseph—Louis Lagrange [Lag1771]. Euler, and later Gauss, gave separate
proofs of this fact.



13.4. LUCAS’S THEOREM 219

Theorem 13.3.1 (Wilson’s Theorem). A natural number n > 2 is prime if and only if
(n-=1)!=-1 (mod n).

Proof. First, we observe that the claim holds for n = 2, since 1 = -1 (mod 2).
Suppose that n is prime strictly greater than 2. Then every integer 0 < a < n has a multiplicative
inverse modulo 7, meaning that for every integer a there is an integer a~! such that

=1,

aa

Now we group the integers 1 < a < n into pairs with their inverses. By Exercise 11.6 and the
assumption that n # 2, there are exactly two integers that would pair up with themselves because
they are their own inverses: The integers 1 and —1 are the only two integers @ modulo n for which
the congruence a> = 1 (mod n) holds. The other integers come in proper pairs (a, a~'). Therefore,
we have

(n=-1!'=1(n-1)=-1 (mod n).

Conversely, suppose that the congruence (n — 1)! = —1 (mod n) holds. Since any 0 < a < n
is a divisor of (n — 1), it follows that for any such a there is a solution to the linear congruence

ax = -1 (mod n).

This implies that any 0 < a < n is invertible modulo n, so it follows that gcd(a,n) = 1 for all
0 < a < n. We conclude that the only proper divisor of # is 1, and therefore n is prime. O

13.4 Lucas’s Theorem

Kummer’s Theorem gave a complete description of the prime factorization of binomial coefficients.
In principle, this is sufficient to know the congruence class of (,:;) modulo a prime p. In the following
theorem, which is due to Edouard Lucas, we establish a way of determining the congruence class
of the binomial coefficient modulo p. If this congruence class is shown to be 0, the p-valuation can

be computed precisely with Kummer’s Theorem.

Theorem 13.4.1. Consider a prime number p, and natural numbers m and n written in base p as

m = iaipi and n= i bip'.
i=0

(o) =1

1

Then the congruence

k
(” ") (mod p)
— \4i

holds. In particular, if b; < a; for some i, then (,71) is divisible by p.
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Proof. Recall from the Binomial Theorem that () is the coefficient of the x"-term in (x + 1)". We
will prove the asserted congruence by computing this coefficient in another way.
By Fermat’s Little Theorem it follows that a’* = a (mod p). This implies that

(a+b)pkza+bzapk+b”k (mod p).

Using the base-p representation n = Zzl'(:o b;p" of n, we find that
(x+1)" = ]_[(x + 1)o7 = ]_[(xp’ +1)” (mod p).
i=0 i=0

Expanding the polynomial (xp[ + 1) we obtain:

. k p-1 bi i k bi Sk i
(x+1) =1—[Z(t')x'p = Z l_[(t) x=i=0"P" (mod p).
i=0 ! !

t;=0 0<to,....,tx,<p \i=0

Since every number has a unique representation base p, we see that the coefficient of x™ is [ | zk:o (Zi),

and thus we obtain: )
ny\ _ bl'
(m) = rl (b) (mod p). O

i=0 \7!

13.5 The Quadratic Character of —1

Wilson’s Theorem can be used to prove a historically im-
portant result in the development of modular arithmetic:
that —1 is congruent to a square modulo an odd prime p
ifandonly if p = 1 (mod 4). In his Disquisitiones Arith-
meticae [Gaul986], Gauss writes of this result that when
he encountered it in 1795—he was 19 at the time—he
considered it to be a result of rare beauty and suspected
deep connections with even more profound results, that he
concentrated all his efforts into understanding its under-
lying principles. He became so attracted by the questions
of this nature, that he could not let them be. Ultimately,
Gauss’s investigations into higher arithmetic, as he pre-
ferred to call it, led him to prove the celebrated Law of
Quadratic Reciprocity.

While the law of quadratic reciprocity is certainly the
central theorem of our subject, the quadratic character

of —1 modulo a prime is a key result on its own. In this Figure 13.2: Carl Friedrich Gauss. Pas-
tel painting by Johann Christian August

Schwartz, 1803.
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section we will show that it can be used to show that

there are infinitely many primes congruent to 1 modulo 4.

Furthermore, we will use the fact that —1 is congruent to a square modulo p when p =1 (mod 4)
in the next chapter to prove Fermat’s Two-Square Theorem, which asserts that every such prime is
the sum of two squares. Questions similar to the quadratic character of —1 modulo a prime will be
investigated more fully in Chapters 18 and 19.

Theorem 13.5.1 (The Quadratic Character of —1). Consider an odd prime p. Then there exists an
integer a such that

a’>=-1 (mod p)
ifand only if p =1 (mod 4).

Proof. First, we show that if there is an integer a such that a> = —1 (mod p), then we must have
p =1 (mod 4). By Fermat’s Little Theorem it follows that

(-7 = (@) =a’" =1 (mod p)

This shows that p—gl must be even, which is equivalent to the congruence p = 1 (mod 4).

For the converse, assume that p = 1 (mod 4). By Wilson’s Theorem we know that (p — 1)! =
—1 (mod p). Now, observe that the integers 1,..., p — 1 can be arranged in pairs, where each i is
paired with p—i, which is always distinct from i because p—1 is even. Since i(p—i) = —i> (mod p),
we obtain the congruences

) ) v ((p =1 2_ -1 2
1= -nr= 0 (B = (B oo

The last congruence holds, because (p — 1)/2 is even by the assumption that p = 1 (mod 4). Thus,
we have presented —1 as a square modulo p. O

The previous theorem describing the quadratic character of —1 modulo an odd prime p can be
used to show that there are infinitely many primes congruent to 1 modulo 4. The first fifteen primes
congruent to 1 modulo 4 are:

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, and 137.
Theorem 13.5.2. There are infinitely many primes congruent to 1 modulo 4.
Proof. Consider a finite set of primes py, ..., pi that are all congruent to 1 modulo 4, and define
n=Q2p1---pi)’+1.

Notice that n = 1 (mod 4) is greater than 1, and p; { n for any 1 <i < k. It follows that for any
prime divisor g of n, we have

(2p1+--pr)? = -1 (mod q),



222 CHAPTER 13. FERMAT’S LITTLE THEOREM AND ITS CONSEQUENCES

showing that —1 is a quadratic residue modulo g. Since —1 is a quadratic residue modulo ¢ if and
onlyif g =1 (mod 4), it follows that any prime divisor ¢ of n is congruent to 1 modulo 4. Since
none of the prime divisors of n are among the primes p; we started out with, the primes p; could
not have listed all the primes congruent to 1 modulo 4. O

Theorem 13.5.1 and its proof can be generalized to arbitrary exponents. For example, the
following theorem implies that the congruence x* = —1 (mod p) is solvable if and only if p =
1 (mod 8), that the congruence x® = —1 (mod p) is solvable if and only if p = 1 (mod 16), and
so on.

Theorem 13.5.3. Consider an odd prime p and consider a natural number n with 2-adic decompo-
sition n = 2Xm. Then the congruence

x"=-1 (mod p)
is solvable if and only if p = 1 (mod 2**1).

Proof. The proof is by induction on k. For k = 0, the statement is trivial, and for k = 1, the
proof was given in Theorem 13.5.1. For the inductive step, assume that for any number n with

2-adic decomposition n = 2¥m, the congruence x* = —1 (mod p) is solvable if and only if
p=1 (mod 2"“), and consider a number n with 2-adic decomposition n = 2K+,
For the forward direction, assume that a is an integer such that ¢” = —1 (mod p). Then

b := a®" is an integer such that
p? = -1 (mod p),

so we see that p = 1 (mod 2%*!). Consequently, the fraction

p—1
2k+1

is an integer. By Fermat’s Little Theorem it follows that

p-1 k+1 pr-1
(=127 = (a® "™)FT = (™)' =1 (mod p).
p—1
ST
For the converse, suppose that p = 1 (mod 2k+2) and consider an integer a such that a
—1 (mod p). Such an integer exists by the inductive hypothesis. Now partition the set of numbers
{1,..., p — 1} into classes of 2¥*! numbers of the form {x, ax, . .., a2k+l_1x}. We will write ¢ for
the number of such classes. Then we have p = 2¥*1¢ + 1, so we see that ¢ is even.
Since the number of classes is ¢, we can label them by C; for each 1 <i < ¢, and we can pick a
representative x; € C; for each i. Now it follows by Wilson’s Theorem that

This implies that is even, so that p = 1 (mod 2¢*2).

2k _

c 2k+1_1 2k+1

=== [] a/ni= ﬁ(—1)x§k” = (—1)Cﬁx§k” = (ﬁxi) (mod p). O
i=1

i=1  j=0 i=1 i=1
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13.6 The Infinitude of Primes Congruent to 1 Modulo Powers
of 2

One way to show that a prime p is congruent to 1 modulo # is by finding an integer a such that
ord,(a) = n.

By the Order Theorem and Fermat’s Little Theorem, this implies that n | p — 1. We will use this idea
to show that there are infinitely many primes congruent to 1 modulo any power of 2. In particular,
there are infinitely many primes congruent to 1 modulo 4, modulo 8, modulo 16, and so on.

Theorem 13.6.1. For any positive natural number n, there are infinitely many primes congruent to
1 modulo 2".

Proof. Since p =1 (mod 2””) implies that p = 1 (mod 2"), it suffices to show that for any finite
list py, ..., px of primes congruent to 1 modulo 2"*!, there is a prime g = 1 (mod 2”“) which is
not among the primes p;.

Given such a list of primes p;, let

a:=2p1-pr

and let g be a prime divisor of the integer b := a*' + 1. Note that ¢ is necessarily an odd prime,

since a is even and hence b is odd. Since p; 1 b for any i, it follows that g is not among the primes
pi. Furthermore, we observe that
a* =-1 (mod q).

This implies that ord, (a) | 27+1 while clearly ordy(a) 1 2". Thus, we must have ord, (a) = o+l
and this allows us to conclude that ¢ = 1 (mod 2"*!). |

The previous theorem is a special case of a deep theorem in analytic number theory: Dirichlet’s
Theorem. Dirichlet’s Theorem shows that for any integer a relatively prime to n, there are infinitely
many primes

p=a (mod n).

The techniques of proving Dirichlet’s Theorem are beyond the scope of this course. However, having
taken this course, you are well equipped to read LeVeque’s excellent Topics in Number Theory
[LeV1956a; LeV1956b], a two-volume work that contains well-explained proofs of Dirichlet’s
Theorem as well as the Prime Number Theorem.
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Exercises

Starter Exercises

13.1 For every prime p = 1 (mod 4) below 100, find the least positive integer a such that
a’>= -1 (mod p).
13.2 (a) Consider two integers a and b, and a prime number p. Prove, without using Fermat’s
Little Theorem, that
(a+b) =a” + b? (mod p).

(b) Suppose that a > 0. Use the previous congruence and the fact that a = 37| 1 to give
your own proof of Fermat’s Little Theorem.
13.3 (a) Prove that
5° = 5% (mod 31).

(b) Prove that
77 =77 (mod 43).

Routine-Building Exercises

13.4 Show that
2P2 4372162 =1 (mod p)

for any prime number p # 3.
13.5 For any positive integer n we define the Euler quotient

x¢(m _q
Qn(x) = -
n

where x is assumed to be relatively prime to n. In the special case where 7 is a prime, g, (x)

is called the Fermat quotient.

(a) Show that
gn(ab) = gu(a) + q,(b) (mod n)

for any two integers a and b relatively prime to 7, and conclude that g, (a*) = kg,(a) (mod n)
for a relatively prime to n.
(b) For any prime p, define the Wilson quotient W), by

_(p-D!'+1
) )
Prove Lerch’s formula [Ler1905], which asserts that

W, :

p-1
> ap(k) =W, (mod p).
k=1
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13.6 Show that \
33" = 3% (mod 97).

13.7 (a) Show that any number of the form
m’n—n’m

is divisible by 30.
(b) Show that for any two odd primes p and ¢, the number
Pa-4’p
is divisible by 240.

13.8 Prove that if
a" =a (mod n)

for every integer a, then n = 2 or n is odd.
13.9 Consider two distinct primes p and ¢, and an integer a > 0. Prove that

a’? +a=a’ +a? (mod pgq)

13.10 Consider an odd prime p = 2n + 1. Show that

(2”) = (=) (mod p).
n

13.11 Consider a prime p and two numbers m and n. Prove that
pkn
prm

Z k" =0 (mod n)
k=1

(n) (mod p).
m

13.12 Show that the congruence

holds if and only if n is odd.
13.13 (a) Consider a prime p and an integer p 1 a. Show that

a’ =a (mod pz) = a’’ =a (mod pz).

(b) A prime satisfying a” = a (mod p2) is called a Wieferich prime base a. Wieferich
encountered this condition by showing that if x” + y? = z” with p { xyz, then p must
be a Wieferich prime base 2 [Wie1909]. The only known Wieferich primes base 2 are
p = 1093 and p = 3511, and there are no smaller Wieferich primes base 2.

In bases larger than 2 there are smaller Wieferich primes, although they are still rare.
The only known Wieferich primes base 3 are p = 11 and p = 1006003. Show that 5 is
a Wieferich prime base 32.
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Challenge Exercises

13.14 Find the least integer k > 1 such that every integer of the form x* — x is divisible by 47 and
89.
13.15 Find a prime p > 3 such that
33 = 33 (mod p).

13.16 For any integer a and any prime number p, show that
a?* = o (mod pk) )
13.17 Find all the solutions to the equation

p'-q"=p+q,

where p and ¢ are prime numbers.
13.18 Consider two primes p and g. Show that

pq | (137 = 5P)(139 — 59) o pq | 12.

13.19 (a) Show that the number 6481 = 3% — 3* + 1 is prime. Hint: In order to avoid trying
out all the primes below 80, show first that every prime factor p of 6481 satisfies
p =1 (mod 24).
(b) Compute the prime factorization of the number

3% - 1.
13.20 Consider the function f(n) = 2n + 1. Show for every prime p, the sequence

ki f5(p)

obtained by iterating the function f, contains composite numbers.
13.21 (a) Consider an odd prime g. Show that the numbers

29 -1 and qg+1.

are relatively prime.
(b) Consider two distinct primes p and ¢, and let » be a common prime divisor of the
numbers
pi-1 g’ -1
and .
p—1 q-1

Show thatr =1 (mod 2pgq).




Chapter 14

Fermat’s Two-Squares Theorem

14.1 Numbers Representable as a Sum of Two Squares

In this chapter we are concerned with the question which numbers are representable as a sum of
two squares. In other words, our goal is to find a precise characterization of the numbers » that can
be written in the form
n=a*+b>

Here, we permit ourselves to pick a = 0 or b = 0, so that any perfect square is trivially representable
as a sum of two squares. The problem of finding those numbers n that can be written as the sum of
two squares is equivalent to the problem of finding integer lattice points on the circle of radius /n,
as illustrated in Figure 14.1.

Using modular arithmetic, we can find some basic obstructions to the possibility of representing
a number as a sum of two squares. Recall that the square of an even number is always divisible by
4, and the square of an odd number is always of the form 4k + 1. As a direct consequence we see
that if n is of the form 4k + 3 then it is not representable as a sum of two squares. This observation
leads to the following lemma.

Lemma 14.1.1. Suppose that n = a*> + b* and consider a prime p =3 (mod 4) such that p | n.
Then p |aandp | b.

Proof. If p 1 a, then the integer « is invertible modulo p. Then the congruence a’>+b* = 0 (mod p)
implies that
(a”'p)®> = -1 (mod p).

This is a contradiction, since the congruence x> = —1 (mod p) is solvable if and only if p =
1 (mod 4). Thus, it follows that p | a and consequently we also obtain p | b. O

The previous lemma can be used to find an obstruction to numbers being representble as a sum
of two squares.

Corollary 14.1.2. If the square-free part of a natural number n is divisible by a prime p =
3 (mod 4), then n is not representable as a sum of two squares.

227
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Figure 14.1: Representing a number as a sum of two squares is equivalent to finding an integer lattice point
on the circle of radius vn. Here we displayed the integer lattice points on the circles of radii V10 and V13.
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Proof. By Lemma 14.1.1 it follows that if » is divisible by a prime p = 3 (mod 4), then we also
have p? | n. Writing n = p?n’, a = pa’ and b = pb’, we find that

n =a?+b?

By iterating this process, we see that the p-adic valuation of 7 is even. Thus, if the p-adic valuation
of n is odd, which is equivalent to the condition that the square-free part of » is divisible by p, then
n is not representable as a sum of two squares. O

One of Fermat’s most remarkable discoveries was that the statement in Corollary 14.1.2 is
sharp: A number is representable as a sum of two squares if and only if its square-free part is not
divisible by any primes congruent to 3 (mod 4). The first published proof of this claim was due to
Euler. Fermat’s discovery is now known as Fermat’s Two-Squares Theorem. We will give Euler’s
proof in the next section. Another classic proof is Don Zagier’s, who famously wrote it up in a
single—rather complicated—sentence.

A commonality between all these proofs is a reduction to the primes, which we will also perform
here. Just as we did for the Pythagorean triples, we will consider numbers that are representable as
a sum of two squares, which are relatively prime to each other. Such representations will be called
primitive.

Definition 14.1.3. We say that a number # is primitively representable as a sum of two squares if
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there are relatively prime positive integers a and b such that
a’+b* =n.

By Corollary 14.1.2 it follows immediately that numbers divisible by a prime p =3 (mod 4)
are never primitively representable as a sum of two squares: Either they are not representable at all,
or they are representable as the sum of two squares of numbers, each of which is divisible by p.
Likewise, any number divisible by 4 is not primitively representable, since two squares only sum to
a number divisible by 4 if they are both even. Thus, we obtain the following corollary.

Corollary 14.1.4. Any number divisible by 4 or by any prime p = 3 (mod 4) is not primitively
representable as a sum of two squares.

We can thus formulate the Two-Squares Theorem for primitive representations as sums of two
squares as follows: A number » has a primitive representation as a sum of two squares if and only
if n is a product of primes congruent to 1 (mod 4) or n is twice such a product.

In order to reduce the Two-Squares Theorem to the primes p = 1 (mod 4), we first recall the
Brahmagupta—Fibonacci identity, from which it follows that products of numbers representable as
sums of two squares are again so representable. While this identity might appear to come out of
thin air, it has a natural interpretation in the Gaussian integers, which we will discuss in ??.

Lemma 14.1.5 (The Brahmagupta—Fibonacci Identity). For an integers a, b, ¢, and d, we have
(@ + b*)(c* + d°) = (ac + bd)* + (ad F bc)>.
Proof. This identity can be verified by a simple calculation:

(a2 + bz) (c2 + d2) = a%c? + a*d? + b*c? + b*d>
= a%c? + 2abcd + b*d?* + a*d* ¥ 2abcd + b*c?

= (ac = bd)? + (ad ¥ bc)?. O

By the Brahmagupta—Fibonacci identity it is easy to note that the number 65 can be represented
as a sum of two squares in two distinct ways:

65=1>+8" and  65=4*+7%
Indeed, the Brahmagupta—Fibonacci identity gives that
65=13-5=(22+3%)(12+2%) = (6 £2)%> + (4 7 3)°.

We have thus reduced the Two-Squares Theorem to the following statement: Every prime
p = 1 (mod 4) can be represented as a sum of two squares. In fact, somthing stronger is true:
Every prime p = 1 (mod 4) can be uniquely represented as a sum of two squares.
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Proposition 14.1.6. Any prime number p can be represented in at most one way as a sum of two
squares.

Proof. We have already seen that primes of the form p = 3 (mod 4) are not representable as the
sum of two squares, which means that the claim is indeed true for such primes. The only way to
represent 2 as a sum of two squares is

2=12+12%

The only remaining case is p = 1 (mod 4).

Consider a prime p = 1 (mod 4), and suppose that p = x?>+y% and p = u” +v? are two distinct
representations of p as a sum of two squares with x < y and u < v. Any such representations are
automatically primitive, since p is prime. It follows that y and v are invertible modulo p, so we
have

(xy ™% =-1 (mod p) and (uv™H?%=-1 (mod p).

This implies that xy™' = +uv~! (mod p). By changing the sign of u, which doesn’t affect the
equation u” + v> = p, we may assume that xy~! = uv~! (mod p), which is equivalent to

xv = yu (mod p).

However, note that all of x, y, u, and v are strictly below /p. Hence it follows that xv = yu. This
implies that the fractions )y—‘ and |- are equal. Since they are in lowest terms, we must have x = u and
y=v. O

In order to prove this claim, suppose that a> = —1 (mod p). Such a solution indeed exists,
since p =1 (mod 4). We will now analyze the multiples of a

0, a, 2a, 3a,...,ma

modulo p, up to some bound m < p which is yet to be determined. At first sight, we don’t know
much about the distribution of these residues, except that they are all distinct since the integer a is
invertible modulo p.

In order to analyze them further, write |x|, for the least distance to a multiple of p. The least
distance from any number to a multiple of p is always at most p/2. For example, |[13|5 = 2 and
|39|7 = 3. The following lemma, which is due to Axel Thue, will be of use.

Lemma 14.1.7 (Thue’s Lemma). Consider two positive integers a and n such that gcd(a,n) = 1.
For any natural number m, there is some 1 < k < m such that

n

kal, < :
kal, < —"—

Proof. We will assume that m < n, for if m is greater then we find |na|, = 0. Foreach0 <i, j < m,
write d; ; := |(i — j)al, be the distance to the nearest multiple of n from the difference between
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Figure 14.2: By Thue’s lemma, in any set of m multiples {a, 24, ..., ma} modulo any prime p, there is one

multiple whose cyclic distance to 0 does not exceed %. Here we see that there is a number of the form
k-7,for 1 < k <4, whose cyclic distance to 0 is 3, which is indeed below 15—7

ia and ja. Since i ranges over m + 1 numbers, the shortest such distance can be no longer than
n/(m + 1). In other words, we can find distinct numbers 0 < i, j < m such that

dij=|G-7jal, < 1

Now define k := j —i. Then we clearly have 0 < k < m, and we have

n
kal, =|(i—Jj < —. O
[kalu =10 = flal, < —"=
Theorem 14.1.8. Any prime p = 1 (mod 4) has a unique primitive representation as a sum of two
squares.

Proof. Consider a prime p = 1 (mod 4). We have already seen that there is at most one way to
represent p as a sum of two squares, so it remains to prove existence.

Consider an integer 0 < a < p such that a> = —1 (mod p). Such an integer exists, since
p =1 (mod 4). By Thue’s Lemma with m := | /p], we find that there is some 1 < k < 4/p such
that

p
k < \p.
|a|p—\/‘l—)+1< p
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If we define r := |kal,, then it follows that 0 < r + k> < 2p. On the other hand, since a* =

—1 (mod p) wehave 7> +k? = (ka)®>+k?> = —k*>+k*> =0 (mod p). Thus, r>+k? is a multiple of
p strictly between 0 and 2p, so we conclude that 7> + k2 = p. This shows that p can be represented
as the sum of two squares. O

Theorem 14.1.9 (Fermat’s Two-Squares Theorem). A natural number n is presentable as the sum

of two squares if and only if the prime divisors of its square-free part are either 2 or congruent to
1 (mod 4).

We will give three more proofs of Fermat’s Two-Squares Theorem in remainder of this chapter.

14.2 Euler’s Proof by Infinite Descent

Euler proved that every prime p = 1 (mod 4) can be written as a sum of two squares by using the
Brahmagupta—Fibonacci identity in a clever descent argument.

Proof of Theorem 14.1.8. Consideraprime p =1 (mod 4). First we observe that there are integers
a and b such that

p | da*+ b
Indeed, it follows from Theorem 13.5.1 that —1 is congruent to a square modulo p, which shows
that p | a® + 12 for some integer a.

Now assume that a and b are integers such that p | a® + b2. We claim that if a> + b*> = rp for
some 7 > 1, then we can find integers x and y such that x> + y> = sp for some s < r. The theorem
then follows at once, since we can keep writing smaller multiples of p as sums of two squares until
we have written p itself as a sum of two squares.

To prove the claim, consider let # and v be two integers satisfying the conditions

u=a (mod r), v=>b (mod r), and lul, [v]| < g
Then u? + v> = a® + b> =0 (mod r), so that u> + v> = rs. We also observe that it is not possible
for both u and v to be congruent to 0 (mod r). Indeed, if this were the case, then @ and b would be
divisible by r, which would make the prime p divisible by r. The inequality u? + v < § implies
that s < 5.

Multiplying a?+b? with u?+v? gives (a?+b?) (u>+v?) = r’sp. By the Brahmagupta—Fibonacci
identity, we can write this as

(@® + b*)(* + d°) = (au + bv)? + (av — bu)>.

Now we observe that au + bv = a®> + b> =0 (mod r), and that av — bu = ab —ab =0 (mod r).
This shows that both au + bv and av — bu are divisible by r, so we obtain the identity

(au + bv)2 (av — bu)2
+ = sp.

r r

Thus we have written a smaller multiple of p as a sum of two squares, so the theorem is proven. O
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Exercises

Starter Exercises

14.1 For every prime p = 1 (mod 4) below 100, write p as a sum of two squares.
14.2 Show that no odd prime p can be written as a sum of two cubes.

Routine-Building Exercises

14.3 Show that a natural number n can be written as the sum of two triangular numbers if and only
if 8n + 2 can be written as the sum of two squares. Hint: Use one of the identities stated in
Exercise 1.6.
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Part VI

The Law of Quadratic Reciprocity
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Chapter 15

Polynomials

15.1 Polynomials with Integer Coeflicients

Definition 15.1.1. An polynomial in one variable x is an expression of the form

f(x) = ax" + ay_1x"!

+ -+ a,

in which we require that the leading coefficient a,, is nonzero, unless n = 0. A polynomial f(x) as
above with leading coeffcient a,, is said to be of degree n. The integers a; are called the coefficients
of f(x). The zero polynomial is the constant polynomial f(x) = 0 and the unit polynomial is the
constant polynomial f(x) = 1.

The coefficients of a polynomial may be taken from any number system. When we wish to
specify that the coefficients are integers or rational numbers. In such cases we speak of polynomials
with integer coefficients or polynomials with rational coefficients.

There is a subtle, yet important distinction between polynomials and the functions they describe,
which has to do with equality of polynomials. Two polynomials

1 1

ax" + a1 X"+ +ap and bx"+ b, 1 X"+ -+ b

are said to be equal if their coeflicients are equal, meaning that a; = b; for all 0 < i < n, while
functions are considered equal if their values are equal. This is an important distinction, because
for some number systems such as the integers modulo n, polynomials aren’t necessarily equal as
polynomials when they are equal as functions. For instance, by Fermat’s Little Theorem we have

that
xP =x (mod p),

while the polynomials x” and x clearly can be distinguished by their coefficients. Nevertheless, we
will show in Corollary 15.3.3 that two polynomials with integer coefficients have equal coefficients
if and only if they define equal functions.

237
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Definition 15.1.2. A function f : Z — Z is said to be polynomial in the integers if there is a
polynomial with integer coefficients such as the above, such that

f(x) =ax" + a1 X" N+ +ag
for all x € Z.

Remark 15.1.3. Polynomials can be added, subtracted, and multiplied in the same way as integers.
To add two polynomials, we add their corresponding coefficients, taking missing coefficients as
zero when necessary. Polynomials are multiplied by the formula

(z”: aixi) (Zm: bjxj) = Zn: i aibjx”j
i=0 7=0

i=0 j=0
n+m n

= aibk_,-xk.
k=0 i=0

These operations of addition, subtraction, and multiplication, polynomials satisfy the laws of
arithmetic. More precisely, the polynomials with integer coefficients form a commutative ring. We
say that a polynomial g(x) divides a polynomial f(x) if there is a polynomial A(x) such that

J(x) = g(x)h(x).

Definition 15.1.4. A root of a polynomial f(x) is a number r such that

f(r)=0.
Sometimes we will write N ( f) for the set of roots of f.

In the following theorem we will prove that if r is a root of the polynomial f(x), then we can
factor f(x) as (x — r)g(x). This theorem applies for polynomials in any number system. However,
to keep the statement concrete we will state the factor theorem only for polynomials with integer
coefficients.

Theorem 15.1.5 (Factor Theorem). Consider a nonzero polynomial f(x) of degree n with integer
coefficients. An integer r is a root of f(x) if and only if there is a polynomial g(x) of degree n — 1
with integer coefficients such that f(x) = (x —r)g(x).

Proof. We will prove the claim by induction on n. In the base case f(x) is a nonzero constant
polynomial, so it has no roots and there is no polynomial g(x) of degree —1 such that f(x) =
(x —r)g(x).

For the inductive step, it is clear that if there is a polynomial g(x) such that f(x) = (x —r)g(x),
then r is a root of the polynomial f(x). For the converse, suppose that r is a root of f(x). Then

f) =f) = f(r) =an(x" =r") +---+ai(x—r).
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By the formula for the difference of kth powers, which was stated in Exercise 1.5, we can factor
k _ .k

x“—rfas o
xF =k = (x = P)gr (%), where qgr(x) = inyk_l_i
i=0
is a polynomial of degree k — 1. Now define g(x) := };_, axqx(x). Then we compute

n n
(x=r)g() = D (e =r)g(x) = Y ar (k= rk) = F(x) = £(r) = (). o
k=1 k=1
The Factor Theorem has some important corollaries. One of them states that a polynomial of
degree n has at most n roots, and the second is a factor theorem for modular arithmetic, which we
will establish in Theorem 16.1.1.

Corollary 15.1.6. A polynomial of degree n with integer coefficients has at most n roots.

Proof. The proof is by induction on the degree n. If f(x) is a constant polynomial of degree 0 and
its leading coefficient is nonzero, then f(x) is always nonzero and so f(x) has no roots.

For the inductive step, assume that all polynomials of degree n have at most # roots, and consider
a polynomial f(x) of degree n + 1. Then either f(x) has no roots, in which case we are done
immediately, or f(x) has a root r, in which case f(x) factors as

) = (x-r)gl)

by the Factor Theorem, where g(x) is a polynomial of degree n. Then the product (x —r)g(x) =0
if and only if x — r = 0 or g(x) = 0. Thus we see that x is a root of f(x) if and only if x = r or x is
a root of g(x), so there are at most n + 1 roots of the polynomial f(x). O

15.2 Derivatives of Polynomials

The derivative of a function f at a point x, if it exists, measures the rate of change of f in close
vicinity of x. It is formally defined as the limit

fx+h) - fx)
h

Intuitively, such a limit exists if we can determine a unique value y = f’(x) so that the quanitity
(f(x+h)—f(x))/h gets arbitrarily close to y as & gets arbitrarily close to 0. When such a limit exists
for every x, we say that f is differentiable. Many of the most common functions are differentiable,
except at obvious points of discontinuity as seen, for instance, in step functions, or functions with
sudden change of direction such as the absolute value function. In this short section we will prove
that all polynomials are differentiable. There is an important theorem in number theory that require
knowledge of the derivatives of polynomials: In our proof of Hensel’s Lemma we will make use of
the Taylor Expansion Theorem proven below.

The following theorem is not only useful when /4 approaches 0. For example, in the case where
h is a prime p it tells us that f(x + p) — f(x) is always a multiple of p.

f'(x) = lim
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Theorem 15.2.1. Consider the polynomial

F(X) = apx™ + ap1 X"+ -+ arx + ag.

Then the polynomial f(x + h) — f(x) is divisible by h, with quotient

fath = f Zki x4 Y

=1 i=0

Proof. By the formula for the difference of kth powers, which was stated in Exercise 1.5, we can

write
k—1

x+hk-xk=n in(x + Rkt
i=0
In particular, since each of these differences of kth powers is divisible by 4, we see that the
polynomial f(x + h) — f(x) is divisible by A. It follows that

.—

n n

f(x+h)—f(x)=2ak((x+h)k—x =n a xi(x_,_h)k—l—i. a

k=0 k=1 i=0

Theorem 15.2.2. Consider the polynomial f(x) = a,x" + - -+ ag. Then f is differentiable at
every x, and the derivative can be computed by the formula

f(x) = Z kax!
k=1

Proof. Since polynomials are continuous functions, we can compute the limit as # — 0 simply by
evaluating the quotient of f(x + h) — f(x) divided by 4 at O:

f(x) = Zn:kZiakx (x + 0)F 1 Zn:kZiakx Zn: kagx*!
=1 i=0 =1 i=0 k=1

In the last equality we used that the summands in the inner summation do not depend on the
summation index i. O

The derivative of any polynomial f(x) is again a polynomial. An immediate consequence of
the previous theorem is that if 4(x) = af(x) + bg(x) is a linear combination of the polynomials
f(x) and g(x), then the derivative of & can be written as the linear combination

W (x) = af'(x) + bg'(x).
It also follows that, since the derivative is again a polynomial, it is again differentiable. Thus we
have iterated derivatives of polynomials. We will write %kk f(x) or £ (x) for the kth deriviative
of f(x). A straightforward induction argument shows that
k

pn kx =n(n—=1)---(n—k+ x"*.
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We can phrase this identity equivalently as:
1 dk n _ n\ ok
kak ~ k)"

This leads to the following theorem by Brook Taylor, who stated the result more generally in terms
of fluent quantities in his work Methodus incrementorum directa et inversa [Tay1715]. Although
Taylor was the first to prove the series expansion that now bears his name, the method was discovered
first without proof by James Gregory, who shared his insight in a letter to John Collins in 1671
[Grel671]. More on the history of Taylor series can be found in [Feil985].

Theorem 15.2.3 (Taylor Expansion Theorem for Polynomials). Consider the polynomial
f(x) = anx" + an—lxn_1 +---+aix +aop.

Then we have for each y, the identity

n )
fa+y) =) LRSI

!
e k!

In particular, there is a polynomial g(x, y) in the variables x and y, such that

fx+y)=fx)+yf(x) +y*g(x,y).

Proof. We will first prove the theorem for f(x) := x". By the Binomial Theorem and our earlier

. k .
observation that %%x” = (’Z)x”‘k , it follows that

_ 1 n k. k _ 1 1dkxn k
(X+y)”—Z(k)xn y _Zﬂdxky'

k=0 k=0

This shows that the Taylor expansion formula holds for f(x) = x". The general claim follows, since
every polynomial is a linear combination of polynomials of the form x’ and differentiation preserves
linear combinations. Finally, the polynomial g(x, y) is given by the tail of the series:

15.3 Lagrange’s Interpolation Theorem

Lagrange’s Interpolation Theorem establishes that for any set of data points, as illustrated in
Figure 15.1, there is always a way of defining a polynomial that exactly matches the data. Moreover,
it gives the unique way of defining such a polynomial in the lowest degree. Interpolation theorems
such as Lagrange’s or Newton’s addressed a practical need for geometers of the 17¢th and 18th
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Figure 15.1: A polynomial of degree 3 obtained by Lagrange interpolation.

centuries: It allowed them to estimate intermediate values of a function from a finite amount of
data such as tables of planetary positions or values of trigonometric functions.

Lagrange’s Interpolation Theorem has the important consequence that any polynomial of degree
n is uniquely determined by any n + 1 of its values. We will also use Lagrange’s Interpolation
Theorem in the next section to derive a divisibility property of polynomials due to Kurt Hensel.

The idea underlying Lagrange’s Interpolation Theorem is to break the problem into several
subproblems: For each data point (x;, y;), we create a polynomial that has roots at x; for all the
other data points (x;, y;). This is very easy to do: we just take the product

gi(x) = (x —x0) - (x —xi—1) (x = xj31) - (x — x;).

Then we have that g;(x;) = 0 for all j # i and g;(x;) # 0. Thus there is some constant ¢; such that
c;gi(x;) = y;. Adding them all up gives the Lagrange Interpolation Theorem.

Example 15.3.1. In Figure 15.1, we started with the set of points
(0,1), (1,-2), (2,0), (3,1).
Then we define the polynomials

g0:= g(x =1 (x=2)(x = 3)

g1 :=—x(x-2)(x-3)

g2 :=0

g3 = gx(x — 1) (x - 2),
which we have already rescaled so that go(0) = 1, g1(1) = =2, g2(2) = 0, and g3(3) = 1. Adding
them up gives the polynomial

f(x):= é(x -Dx-2)x=-3)—x(x=-2)(x-3) + éx(x -1(x-2),

which exactly matches the values specified in the initial data set.
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Theorem 15.3.2 (Lagrange’s Interpolation Theorem). For any choice of n + 1 points (x;, y;) such
that the x; are pairwise distinct, there is a unique polynomial f(x) of degree at most n such that

f(xi) =i
forall0 <i<n.

Proof. For any 0 <i < n, define the basis polynomial for Lagrange interpolation g;(x) by

Then g;(x) is a polynomial of degree n, whose n roots are the points x; for j # i. Furthermore, we
have defined g; in such a way that g;(x;) = 1. Now we define the polynomial f(x) of degree n by

F@) =) yigix).
i=0

Then f(x;) = y; since g;(x;) = O for j # i and g;(x;) = 1. Thus f satisfies the criteria of the
theorem.

To see that the polynomial f(x) is the unique polynomial of degree at most n that satisfies
f(x;) = y;, consider a second polynomial g (x) of degree at most n that satisfies the same requirement.
Then the polynomial

J(x) —g(x)
is a polynomial of degree at most n with n + 1 roots. By virtue of Corollary 15.1.6 this is only
possible if f(x) — g(x) is the zero polynomial, that is, if f(x) = g(x). O

Corollary 15.3.3. Consider two polynomials f(x) and g(x). Then the following are equivalent:
(1) The polynomials f(x) and g(x) have equal coefficients; that is, they are equal as polynomials.
(i1) The polynomials f(x) and g(x) have equal values, that is, they are equal as functions.
(iii) The polynomials f(x) and g(x) have equal values of any set of n + 1 inputs.

In particular, any polynomial f(x) is uniquely determined by the values

f(0),.... f(n).

Even though the basis polynomials of Lagrange’s Interpolation Theorem don’t always have
integer coefficients, we can use Lagrange’s Interpolation Theorem to show that for any polynomial
f with real coeflicients, if

JQ0),.... f(n)

are integers, then f(x) is an integer for every integer x.



244 CHAPTER 15. POLYNOMIALS

Definition 15.3.4. A polynomial f(x) with real coefficients is said to be integer valued if f(x) is
an integer for every integer x.

A simple example of an integer valued polynomial that doesn’t have integer coefficients is the

polynomial
x(x+1)
5
which returns the triangular numbers.
Lagrange’s Interpolation Theorem establishes a polynomial f(x) as a linear combination of the
basis polynomials, thus obtaining

Fx) =) fl)gi).
k=0

However, we can turn this perspective around. Each value f(x) can be written as a linear combination
of the values f (k) for 0 < k < n. This observation is important enough that we establish it in its
own lemma, which is a direct corollary of Lagrange’s Interpolation Theorem.

Lemma 15.3.5. Consider a polynomial f(x). Then each value f(x) can be written as a linear
combination of the values f(0), ..., f(n), that is, there are coefficients a;(x) for each 0 <i < n
depending on x such that

n

F@) =" aix)f).

i=0
Proof. The coeflicients a; (x) are given by the basis polynomials g4 (x). O

Equipped with this change of perspective, we can prove that a polynomial of degree n is integer
values as soon as its values f(0), ..., f(n) are integers.

Theorem 15.3.6. Consider a polynomial f(x) of degree n with real coefficients. If the values
fQ0),.... f(n)
are integers, then f(x) is an integer for every integer x.
Proof. The basis polynomials of f are
1R
sio) = | [ 7=

j=0
J#

We can express g;(x) using binomial coefficients as

i-1 . n . .
B xX—7J X—J _ neifX|(x -1
gi(x)_jljoi—j l_l i— =D (1)( n—i )

Jj=i+1

which is an integer for every integer x. Therefore it follows by Lagrange’s Interpolation Theorem
that every value f(x) can be written as an integer linear combination of the integers f(0), ..., f(n),
which proves the theorem. |
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15.4 Fixed Divisors of Integer Polynomials

In Chapter 5, we have done a few exercises which asked us to show that integers in certain polynomial
forms satisfy a divisibility property. For example, we showed that a® — a is always divisible by 6,
and that a® — a is always divisible by 30. We also showed that the product of any n consecutive
integers is always divisible by n!. In this section we will establish a vast generalization of these
facts.

Definition 15.4.1. The fixed divisor of a function f : X — Z into the integers is the greatest
common divisor of all values of f,i.e.,

ged({f(x) [ x € X}).

Lagrange’s Interpolation Theorem can be used to determine the greatest common divisor of all
the values of a polynomial, by examining only one more value than its degree. This observation is
due to Kurt Hensel, who was a student of Leopold Kronecker.

Theorem 15.4.2 (Hensel’s Fixed Divisor Theorem [Hen1896]). Consider a polynomial f(x) of
degree n, with integer coefficients. Then the fixed divisor of f is the greatest common divisor

gced(f(a),..., f(a+n))
of any n + 1 values of consecutive inputs of f.

Proof. First, we note that by translating the polynomial along the x-axis, which we can do by
considering the polynomial f(a), it suffices to show that for any polynomial f(x) of degree n with
integer coeflicients, the fixed divisor of f is the greatest common divisor of the integers

f(0),.... f(n).

Now recall from Theorem 15.3.6 that the values f(x) are integer linear combinations of the values

F(0),..., f(n):
Fx) =" F)gix).
i=0

It follows that
ged(f(0), ..., f(n) | f(x).

Since the fixed divisor of f divides this greatest common divisor, this establishes the theorem. O

Example 15.4.3. Consider the polynomial

f(x) =x"—x.
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When n is even, then f is an even function, which means that f(—x) = f(x), and when 7 is odd,
then f is an odd function which means that f(—x) = —f(x). In either case, this implies that the
fixed divisor of x" — x is equal to the greatest common divisor of the elements

J(0),.... f(m),

where m is the largest integer such that 2m < n + 1. In other words, to compute the fixed divisor of
x" — x, we only have to inspect about half the amount of values of Hensel’s Fixed Divisor Theorem.
Furthermore, the polynomial f(x) = x" — x always satisfies f(0) = 0 and f(1) = 0, reducing the
amount of cases even further. Thus, the fixed divisor of x" — x is

ged({f(k) |2<k<(n+1)/2}).

(i) Forn = 3, the only number 2 < k < (n+1)/2 is the number 2. The polynomial f(x) = x> —x
from Exercise 5.15 has the value

f2) =6,

so the fixed divisor of x> — x is 6, which is 2 - 3.

(i) Forn = 5, the only two numbers 2 < k < (n+ 1)/2 are the numbers 2 and 3. The polynomial
f(x) = x> — x from Exercise 5.16 has the values

f(2) =30 and f(3) =240.
Since 240 is divisible by 30 it follows that the fixed divisor of x> — x is 30, whichis 2 -3 - 5.

(iii) For n = 7, the only three numbers 2 < k < (n + 1)/2 are the numbers 2, 3, and 4. The
polynomial f(x) = x’ — x has the values

f(2)=126 and  f(3) =2184.

Furthermore, using that 4’ = (27)? we see that f(4) factors as (27 —2)(27 +2) by the formula
for the difference of squares. Therefore it follows that the fixed divisor of f(x) is the greatest
common divisor of f(2), f(3), and f(4), which is just the greatest common divisor of f(2)
and f(3), which is

0cd(126,2184) =42=2-3-7.

We will generalize these examples in ??.
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Exercises

Routine-Building Exercises

15.1 Show that x'3 — x has fixed divisor
2.-3.5-7-13.
15.2 The rational root theorem. Show that if the polynomial equation
ax"+-aix+ap=0

with integer coefficients has a rational solution xo = 7 with ged(s,t) = 1, then s | ap and
t | a,. Conclude that if the polynomial is monic, meaning that a,, = 1, then any rational root
is an integer. Also conclude that V7 is irrational.
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Chapter 16

Polynomial Congruences

16.1 Polynomial Congruences of Prime Moduli

Even though a polynomial

1

f(x) =ax" +a,.1x"" +---+ag

has at most n roots in the integers, the same is not true in modular arithmetic. A fairly easy example,
the quadratic congruence
x>=1 (mod 8)

has four solutions, the numbers 1, 3, 5, and 7. On the other hand, we will prove in this section that
the number of solutions of a polynomial congruence modulo a prime is, just as in the integer case,
at most the degree of the polynomial.

Theorem 16.1.1 (Factor Theorem in Modular Arithmetic). An integer r is a solution to the polyno-
mial congruence

Jf(x) =0 (mod n),

if and only if
f(x) = (x—-r)g(x) (mod n)

for some polynomial g(x).

Proof. The proof is very similar to the proof of Theorem 15.1.5. First, we note that the converse
direction is trivial, so we focus on the forward direction. Suppose that

f(r)=0 (mod n)
and consider the polynomial f(x) — f(r). Then we have

f(x) = f(x) = f(r) (mod n),

and the factorization of f(x)— f(r) as (x—r)g(x) follows in the same way as for Theorem 15.1.5. O
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Theorem 16.1.2 (Lagrange’s Theorem). Consider a polynomial

F(x) = apx" + ap_1 X"V + -+ ay,

and a prime p such that p 1 a,. Then the polynomial congruence

f(x) =0 (mod p)
has at most n solutions.

Proof. We prove the claim by induction on the degree n of the polynomial f. If f has degree zero,
then f(x) = ao, and since the leading term of f is assumed to be not divisible by p, it follows that
ap #0 (mod p). Thus, the polynomial f has no solutions modulo p.

Now suppose that any polynomial congruence modulo p of degree n has at most n solutions,
and consider a polynomial congruence f(x) =0 (mod p) of degree n + 1. If this congruence has
no roots, then the number of solutions is certainly below n + 1.

On the other hand, if f(r) =0 (mod p) is a solution, then by the Factor Theorem for Modular
Arithmetic we can find a polynomial g(x) of degree n such that

J(x) = (x=r)g(x) (mod p).

It follows that the polynomial congruences f(x) =0 (mod p) and

(x—=r)g(x) =0 (mod p)

have the same sets of solutions. Since p is prime, we have by Proposition 11.1.4 that ab =
0 (mod p)ifandonlyifa =0 (mod p)orb =0 (mod p). Any solution x of the congruence
(x—r)g(x) =0 (mod p) must therefore satisfy x —» =0 (mod p) or g(x) =0 (mod p). There
are at most d solutions of the polynomial congruence g(x) = 0 (mod p), so we conclude that there
are at most d + 1 solutions to the polynomial congruence f(x) =0 (mod p). O

The previous theorem is due to Joseph-Louis Lagrange, published in 1770 in Réflexions sur la
résolution algébrique des équations [Lag1770]. Lagrange demonstrated that the roots of polynomials
can be studied by their permutations. His ideas would eventually lead to the emergence of group
theory (the study of symmetry), and Galois theory.

While Lagrange’s Theorem establishes an upper bound for the number of incongruent solutions
of a polynomial congruence modulo a prime, we can use Fermat’s Little Theorem to find examples
of polynomial congruences that have the maximum allowable number of solutions.

Theorem 16.1.3. Consider a prime p and a positive integer n such that n | p — 1. Then the
polynomial congruence
x"=1 (mod p)

has exactly n incongruent solutions.
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Proof. Note that the polynomial congruence x”~! —1 =0 (mod p) has exactly p — 1 solutions.
By the formula for the difference of powers, we have

("' = 1) = (" = 1)g(x) (mod p)
for some polynomial g of degree p — 1 — n. Now we observe that the polynomial congruences
x"=1=0 (mod p) and q(x) =0 (mod p)

have at most n and p — 1 — n solutions, respectively. Since their product has p — 1 solutions, it
follows that the polynomial congruence x” — 1 =0 (mod p) must have exactly n solutions. O

Lagrange’s Theorem can also be used to give another proof of Theorem 13.5.1, which states
that for an odd prime p, the quadratic congruence x> = —1 (mod p) has a solution if and only if
p =1 (mod 4).

Proof of Theorem 13.5.1. We prove thatif p = 1 (mod 4), then there is a square root of —1 modulo
p. Consider a prime p of the form 4k + 1. Then Fermat’s Little Theorem implies that

R D -1 =x*-1=0 (mod p).

Since p is prime, this implies that x> + 1 =0 (mod p) orx** —1 =0 (mod p) for every integer
x. However, the polynomial congruence

x* ~-1=0 (mod p)

has at most 2k solutions modulo p, which is strictly fewer than p. Thus, there must exist an integer
x such that
x*+1=0 (mod p).

k

Given such an integer x, we see that y := x* is a square root of —1 modulo p. O

16.2 Polynomial Congruences of Composite Moduli

In the following theorem we generalize the Chinese Remainder Theorem to polynomial congruences.

Theorem 16.2.1. Consider an integer polynomial f and consider two relatively prime integers m
and n. Then any solution of the system

f(x) =0 (mod m)
f(x) =0 (mod n)

of polynomial congruences corresponds uniquely to a solution of the polynomial congruence

f(x) =0 (mod mn).
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Proof. First note that if f(x) =0 (mod mn), then it follows that f(x) =0 (mod m) and f(x) =
0 (mod n), simply because divisibility is transitive. Consequently, if y is the unique nonnegative
integer strictly below m such that x = y (mod m), then f(y) = (mod m) is also a solution, and
similar for the modulus n. Thus if we write N,,,(f) for the set of roots of f modulo mn, and N,,(f)
and N, ( f) for the sets of roots of f modulo m and n, respectively, then we define a map

b/ Nmn(f) — Nm(f) X Nn(f)

by x — (x (mod m),x (mod n)). We claim that the map 7 is a bijection.
To see that the map x is a bijection, consider 0 < y < m and 0 < z < n such that

f(y) =0 (mod m)
f(z) =0 (mod n).

By the assumption that gcd(m, n) = 1, we obtain from the Chinese Remainder Theorem there a
unique 0 < x < mn such that

x =y (mod m)
x =z (mod n).

Consequently, we have that f(x) = 0 (mod m) and f(x) = 0 (mod n). Applying the Chinese
Remainder Theorem once more to the number f(x), using that O is the only integer # modulo mn
such thatu =0 (mod m) andu =0 (mod n), we find that f(x) =0 (mod mn). O

Corollary 16.2.2. Consider n = pll<1 e pf,{", where all the primes p; are distinct. A polynomial
congruence

f(x) =0 (mod n)
is solvable if and only if the polynomial congruence
f(x)=0 (mod pfi)
is solvable for each i.

Proof. By induction on the number of prime factors of 7. O

16.3 Hensel’s Lemma

Theorem 16.3.1 (Hensel’s Lemma). Consider a prime number p and a polynomial f(x) with
integer coefficients. Furthermore, consider an integer a such that

f(a) =0 (mod p) and f(a) #0 (mod p),
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where f'(x) is the derivative of f. Then there exists for every k > 1 a unique integer ay modulo p*
with a; = a (mod p) such that the congruences

i+l = ag (mod pk) , and flag) =0 (mod pk)

hold for all k.

Proof. We prove the claim by induction. That is, we prove by induction that for each £k > 1 and
every integer axy = a (mod p) satisfying

flax) =0 (mod pk) and f(ax) £0 (mod pk),

k+1) satisfying

there is a unique integer a1 (mod p

f(ars1) =0 (mod pk”) and f(ars1) 20 (mod pk“).

Our goal is to obtain an integer a4+, = ay + tpk for some 0 < ¢ < p. Observe that by the Taylor
Expansion Theorem, we have the congruence

flag+p") = fla) +1p* f'(ay) (mod pt*!).

Since f(ax) =0 (mod p*) and f’(ax) £ 0 (mod p*), it follows that there is a unique integer #o
such that
flax) + t0p* £/ (ax) =0 (mod p*1).

We define ay+1 := ay + top*. Then we have f(ax+1) =0 (mod p**!) by definition. Furthermore,

we have ay+1 = ay = a (mod p). This implies that f'(ax+1) = f'(a) £ 0 (mod p). Therefore it
follows that f’(ag+1) # 0 (mod p**!), completing the proof. |
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Exercises

Routine-Building Exercises

16.1 Show that a number 7 is square-free if and only if the only integer x satisfying the congruence
x> =0 (mod n)isx = 0.

16.2 Show that there are only two polynomials f such that any two values f(x) and f(y) are
relatively prime for distinct inputs x and y.

16.3 Consider a prime number p. Construct for every integer 0 < a < p a polynomial f(x) of
degree < p with coeflicients in Z/pZ such that

f(x):{l ifx=a

0 otherwise.

Use these polynomials similarly to the basis polynomials in Lagrange’s Interpolation Theorem
to show that every function Z/pZ — Z/pZ is polynomial.

16.4 Define the kth power sum
pilai, ... ay) = ak +--- +ak.

We will simply write py for pi(ay,...,a,) and e for ey (ay, ..., ay,).

(a) The Newton-Girard identities. Show that for all £ we have
Pr = e1pi—t — e2pk—2 + -+ + (D) ey pr + (-1)* key.

Hint: This looks more complicated than it is.
(b) Prove that the congruence

¥4+ (p-1)F=0 (mod p)

holds for every 0 < k < p — 1, and every prime number p.
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Primitive Roots

17.1 Counting Elements of a Given Order Modulo a Prime

Euler’s Theorem tells us that
a®™ =1 (mod n)

for every integer a such that gcd(a, n) = 1. By the Order Theorem, this implies that

ord,(a) | ¢(n).

Euler’s theorem therefore gives an upper bound for the order of any element modulo ». For example,
since 13 is a prime number, we have ¢(13) = 12, so all integers relatively prime to 13 have an order
dividing the number 12. Computing the powers of 2, for instance, we see that ord;3(2) = 12:

m o 1 2 3 4 5 6 7 8 9 10 11
2" (mod 13) 1 2 4 8 3 6 12 11 9 5 10 7.

The process of doubling integers modulo 13 is illustrated in Figure 17.1. Using Theorem 9.5 .4,
we can use this table to compute the orders of all the nonzero integers modulo 13. Recall that

Theorem 9.5.4 states that
ord,(a)

gcd(m, ord, (a))

For example, since 3 = 2* (mod 13), it follows that the order of 3 modulo 13 is 3. Similarly, since
5=2° (mod 13), it follows that

ord,(a™) =

5= (2% = (2"%)% =1 (mod 13).
Computing the orders of all the elements from 1 to 12 modulo 13 this way, we obtain:

a 1 2 3 4 5 6 7 8 9 10 11 12
ordi3(@) 1 12 3 6 4 12 12 4 3 6 12 2.

255
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Figure 17.1: Doubling integers modulo 13.

While the orders of the integers modulo 13 might at first glance appear to be somewhat unwieldy,
Theorem 9.5.4 is the key to some important patterns. For example, given an integer a (mod p)
with ord,(a) = p — 1 suchas 2 (mod 13), Theorem 9.5.4 tells us that

p—1

dy(@) =keo —L— -
ordy () =k & = D)

k

In particular, ord,(a™) = p — 1 if and only if ged(m, p — 1) = 1. Indeed, we see that there are four
integers modulo 13 of order 12, corresponding to the powers of 2 with exponents 1, 5, 7, and 11.

However, we can go further: There are two integers that have order 6 modulo 13, and indeed
¢(6) = 2 as well. Similarly, we find that there are ¢ (1), #(2), ¢(3), and ¢(4) integers of order 1,
2, 3, and 4, respectively. The following proposition tells us that modulo a prime p, the number of
integers of order kK modulo p is either O or ¢(k). This suggests that for any prime number p and
any k | p — 1, it should be true that the number of elements of order k is exactly ¢(k). To make
this observation precise, we first need a fundamental property of the totient function.

Theorem 17.1.1. For every positive integer n, we have

D 9(d) =n,

din
where the sum ranges over the positive integers d dividing n.
In terms of Dirichlet convolution, the identity in Theorem 17.1.1 can be stated as follows:
¢ =1 =id.

We will give a combinatorial and an arithmetic proof.
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Combinatorial proof. The sum suggests that there is a way of partitioning the set {1, ..., n} into
sets Ay of size ¢(d), and this is indeed how this theorem is proven. For each positive divisor d of n,
define the map

fa:{1<x<d|gedx,d)=1}y > {1,...,n}

by x — Zx, and define the set A, to be the image of f;. Since 7 is a positive integer, it follows that
the map f, is injective, and therefore each set A, has exactly ¢(d) elements. Now notice that

n
y € Ad < ng(y’ n) = E’

since if x = y/ged(y, n), then ged(x, d) = ged(y/ged(y, n), n/ged(y,n)) = 1. Therefore, it follows
that for every 1 < y < n there is exactly one d | n such that y € Ay, so it follows that the sets Ay
partition the set {1, ..., n}. The sum of the numbers of elements of each Ay is therefore n. |

Arithmetic proof. Recall from Theorem 12.2.4 that ¢ is a multiplicative function, which implies by
Theorem 12.3.4 that the function
n- Y ¢(d)

dln

is multiplicative. Since multiplicative functions are completely determined by their values on prime
powers, it suffices to show that
Do) =p".

dlp™

The only divisors of p” are p* for 0 < k < m, and for any k > 1 we have ¢(p*) = p* — p*~!. Thus,
it follows that

m n

Do) =D 6 =1+ ) pr-p =1+ (" -1 = p". o

dlp™ k=0 k=1

Theorem 17.1.2. Consider a prime number p. Then there are for every k | p — 1 exactly ¢(k)
integers of order k modulo p.

The proof of this theorem makes essential use of the fact that any polynomial congruence of the
form
x¥=1 (mod p)

has at most d solutions. This was established in Theorem 16.1.3. To emphasize this observation,
we will prove Theorem 17.1.2 as a consequence of the following more general theorem.

Theorem 17.1.3. Consider a number n with the property that every polynomial congruence of the
form
x?=1 (mod n)

has at most d solutions. Then there are for every k | ¢(n) exactly ¢(k) integers of order k modulo
n.
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Proof. In this proof, let us write (k) for the number of integers of order X modulo n. We claim
that
¢(k) ifk|¢(n),
y (k) = {

0 otherwise.

The fact that if £ ¥ ¢(n) then (k) = 0 follows immediately from the Order Theorem and Fermat’s
Little Theorem. Thus, it remains to show that (k) = ¢ (k) for any k | ¢(n).

Consider an integer a of order k modulo n. By definition, every integer of order k modulo # is
a solution to the polynomial congruence

=1 (mod n).

This polynomial congruence has at most k solutions. Given that the integer a has order k£ modulo n,
we see that the set of solutions can be described exactly as the following set of numbers:
1, a, ..., a* .

Thus, we see that every solution is congruent to a power of a. In particular, it follows that every
integer of order k modulo 7 is itself a power of a. Recall from Theorem 9.5.4 that an integer of
the form a” has order k if and only if gcd(m, k) = 1. Thus we conclude that, given an element of
order k, there are exactly ¢(k) integers of order k. In other words, (k) is either O or ¢(k), and
certainly we have that ¢ (k) < ¢(k).

To finish the proof, observe that, since every element 1 < x < n relatively prime to n has an
order modulo n, we have

o) = D w) < > ¢(k) = p(n).

k| (n) klg(n)

It follows that the inequality is in fact an equality, and since ¥ (k) < ¢(k) for every k | ¢(n) it
follows that (k) = ¢(k) for every k | ¢(n). O

17.2 Primitive Roots

We saw in the previous section that there are exactly ¢ (k) integers of order k£ modulo p, for every
k | p — 1. It follows that there are

¢(p—1)
integers of order p — 1. Since ¢(p — 1) > 0, it follows that for every prime number p, there is an
integer g such that the integers
l,8,8%...,8"7
form a reduced residue system modulo p. That is, there is an integer g such that every integer a

relatively prime to p is congruent to exactly one power g, where 0 < k < p — 1. Such integers are
called primitive roots. In the previous section we saw that 2 is a primitive root of the prime 13.
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Definition 17.2.1. A primitive root modulo a natural number 7 is an integer g such that

ord,(g) = ¢(n).
Theorem 17.2.2. Consider a natural number n. The following are equivalent:
(1) The number n admits a primitive root modulo n.
(i1) Any polynomial congruence of the form
x?=1 (mod n)
has at most d solutions.

Furthermore, if the first condition holds then there are ¢(¢p(n)) primitive roots, and if the last
condition holds and the polynomial congruence x* = 1 (mod n) has a solution, then it has exactly

gcd(d, ¢(n)) solutions.

Proof. We have already proven that (ii) implies (i) in Theorem 17.1.3. To prove that (i) implies (ii),
consider a primitive root g modulo n, and consider the polynomial congruence

x¥=1 (mod n).

An integer a = g™ (mod n) is a solution if and only if g%* = 1 (mod n). Since we assumed
that ord,,(g) = ¢(n), it follows from the Order Theorem that the congruence g = 1 (mod n)
holds if and only if ¢(n) | dm. The number of 0 < m < ¢(n) such that ¢(n) | dm is exactly
gcd(d, ¢(n)), which is at most d. Therefore, it follows that there are at most d solutions to the
congruence x¢ = 1 (mod n). O

Corollary 17.2.3. The number of primitive roots of a prime number p is ¢(p — 1). In particular,
every prime p admits a primitive root.

Example 17.2.4. The number 9 has the primitive root 2. Indeed ¢(9) = 6, and 2°> = —1 (mod 9)
so that ordg(2) = 6. Thus, by the previous theorem it follows that the congruence x¢ = 1 (mod 9)
has at most d solutions.

Nevertheless, there are polynomials f(x) of degree 2 that are not of this form that have more than
two solutions among the integers relatively prime to 9. For example, the polynomial congruence

x>+x+7=0 (mod 9),

has the three solutions x = 1, 4, and 7 (mod 9).

Some further composite numbers with primitive roots include 4 and 6: The number 3 is a
primitive root of 4, and 5 is a primitive root of 6.

The number 8, on the other hand, does not have primitive roots because ¢(8) = 4 while the
odd integers 3, 5, and 7 all have order 2. In fact, it is possible to precisely classify all the natural
numbers that have primitive roots. We will do so in Theorem 17.4.5.



260 CHAPTER 17. PRIMITIVE ROOTS

17.3 The Discrete Logarithm

It is useful to have access to primitive roots, if they exist, because if g is a primitive root modulo 7,

then the integers

1, g, g2, e ggb(")_1

form a reduced residue system modulo n. This means that every number relatively prime to n is
congruent to exactly one of the integers g', for 0 < i < ¢(n). Having a primitive root therefore
gives a convenient way of representing all the elements of a reduced residue system.

Definition 17.3.1. Suppose g is a primitive root modulo 7, and let a be an integer relatively prime
to n. Then we define the discrete logarithm or index

indg (a)
of a base g to be the unique integer k modulo ¢(n) such that g = a.
Theorem 17.3.2. Consider a natural number n with a primitive root g.

(1) For any two integers a and b relatively prime to n, we have

a=b (mod n) =3 indg (a) = indg(b) (mod ¢(n)).

(i1) Furthermore, we have

indg(ab) = indg(a) +indg(b) (mod ¢(n))
indg(a™) = mindg(a) (mod ¢(n)).

Example 17.3.3. Solving linear congruences becomes quite a straightforward task when a primitive
root is known. For example, the congruence

14x = 6 (mod 26)

is solvable if and only if 7x =3 (mod 13) is. By the previous theorem, this linear congruence is
equivalent to the linear congruence

ind,(7) + indy(x) = ind>(3) (mod 12).
Since ind,(7) = 11 and ind,(3) = 4, we find that indy(x) =5 (mod 12). Thus, we conclude that
x =6 (mod 13)

is a solution of the original linear congruence.
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17.4 The Moduli with Primitive Roots

We have established the existence of primitive roots modulo any prime. In this section, we will give
a complete characterization of those moduli for which a primitive root exists.

17.4.1 Primitive Roots Modulo Odd Prime Powers

Our first target is to show that any odd prime power p* has a primitive root. Our approach to this
problem is of an arithmetic nature, based on an analysis of the p-valuations of differences of powers.

For the following lemma, recall that v,(a — b) = m if and only if a = b (mod p™) but
a#b (mod pm+1). We also recall that for any prime p and any 0 < i < p, the binomial coefficient
(7) is divisible by p.

Lemma 17.4.1. Consider an odd prime p, and two integers a = b (mod p) such that neither a
nor b is divisible by p. Then
vp(a? = bP) =v,(a—-b) + 1.

Proof. Write s := v, (a — b), so that s > 1 by the assumption that a = b (mod p). Then we have
a = b (mod p*), so we can write b = a + tp*, where p { t. The value of b” can therefore be
computed using the Binomial Theorem by

)4

b = (a+1tp*)P = Z (p) Htp)P~ = aP + ap_ltle (mod ps+2) )

i
i=0

Since neither a nor ¢ is divisible by p, it follows that a” # b? (mod p**?). On the other hand, we
see from the binomial expansion of b” that a” = b? (mod p**!). Therefore we conclude that

vp(al = bP) =s+ 1. O

The previous lemma can be iterated to obtain a general lemma called the Lifting the Exponent
Lemma. This lemma was popularized by the Romanian mathematician Mihai Manea [Man2006].

Lemma 17.4.2 (Lifting the Exponent). Consider an odd prime p, and let x =y (mod p), where
neither x nor y is divisible by p. Then for any natural number n > 1, we have

vp(x" = y") = vp(x = y) + vp(n).
Proof. Write n = p*m with p t m, so that vp(n) = k, and write s = v,(x — y). Since we have
assumed that x = y (mod p), we have s > 1. We will prove the claim by induction on k.

In the base case, where k = 0, the claim is simply that

vp(x™ = y") =s.
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To see this, write y = x + tp®, where p { t. Then we have
Y= (x +tp%)" = X" + mx" " tp? (mod p”l) .

Now observe that m, x, and ¢ are not divisible by p by assumption, so it follows that mx"~!t is
not divisible by p. This implies that y”* # x™ (mod ps”). On the other hand, the congruence
x =y (mod p*) clearly implies that x™ = y” (mod p*), so we conclude that

vp(x™ = y") =s.
The inductive step is a direct consequence of Lemma 17.4.1. O

Recall that for any integer a not divisible by p, the integer a?~! — 1 is divisible by p by
Theorem 13.1.1. Therefore, its p-adic valuation « := vp(a‘”‘1 — 1) is at least 1. In the following
lemma we will establish that the order of @ modulo p* can be determined in terms of «.

Lemma 17.4.3. Consider an odd prime p and a primitive root g modulo p. Furthermore, let
m = vp(gp_1 -1).
Then the order of g modulo p* is p™>*(Ok=m) (p _ 1),

Proof. First, we observe that ord,(g) | ord,«(g), so the order of g modulo p* must be a multiple
of p — 1. Write g”?~! = kp™ + 1, so that p 1 k. By the Lifting the Exponent Lemma it follows that

Vp(gpt(p_l) —1)=m+rt.
Consequently, for any integer s not divisible by p we have
gpls(P—l) — (kpm+t + 1)5 =1+ skpm+t (mod pm+t+1) )
This shows that v,, (g?"s(P=1) —1) = m+1 for such s. The first exponent r such thatg” = 1 (mod pk)
is therefore r = pmax(Ok=m)(p, _ 1), O
Theorem 17.4.4. Any prime power p* with k > 1 admits a primitive root.

Proof. By Lemma 17.4.3 it suffices to construct a primitive root # modulo p such that v,, (h” 1) =
1.

Consider a primitive root g modulo p. Write g”~! = kp + 1, and define h, := g + tp. Then we
have

hf_l =(g+tp)P =g e (p-1g"%tp=1+plk-g"?) (mod pz) .
Thus we see that h”~" = 1 (mod p?) if and only if
k= gP™%t (mod p).

This linear congruence has the unique solution 7 = kg (mod p). Thus we see that for any ¢ #
kg (mod p), we have hf_l # 1 (mod pz) and hence

vy ('™ = 1) = 1. O
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17.4.2 The Complete Characterization of Moduli with Primitive Roots

Theorem 17.4.5. Consider a positive integer n. The following are equivalent:
(1) The number n admits a primitive root.
(i1) Either n = 2, or there is a unique element of order 2 modulo n.

(ii1) We have
n=2, 4, p*, or 2p*,

where p is an odd prime.

Proof. We saw in Theorem 17.2.2 that if n admits a primitive root, then the congruence
d —
x* =1 (mod n)

had at most d solutions, for any d > 0. In particular, there are at most two solutions to the congruence
x> =1 (mod n). One of them is the number 1, which is of order 1. The other is —1, which is of
order 2. Since any element of order 2 is a solution to the congruence x> = 1 (mod n), we see that
(1) implies (ii).

Next, assume that there is a unique element of order 2 modulo n. The case n = 4 is swiftly dealt
with, since —1 is the unique integer of order 2 modulo 4. If n = 2k for some k > 3, then there are
three integers of order 2 modulo 2*:

x=-1 and x=2F141.

Thus we see that if n = 2% for some k > 3, then n does not satisfy the hypothesis in (ii).
Now suppose that n = km, where gcd(k,m) = 1 and m is odd and strictly greater than 1. By
the Chinese Remainder Theorem, it follows that any pair of solutions

x*=1 (mod k),
y> =1 (mod m),

determines a unique solution to the congruence z2> = 1 (mod km). It follows that one of them can
have only one nontrivial solution. Since we assumed that m > 1 is odd, and thus has two distinct
solutions, it follows that there is only one solution to the congruence x> = 1 (mod k). Observe that
there is only one such solution if and only if k£ = 1 or & = 2. Furthermore, the previous observation
implies that m cannot have distinct prime factors, so we conclude that m must be of the form m = p*
for some odd prime p. Thus we have proven that (ii) implies (iii).

Finally, we have to show that any number of the form n = 2,4, pk, or 2pk, where p is an odd
prime, admits a primitive root. The number 1 is a primitive root modulo 2, and the number —1
is a primitive root modulo 4. The fact that any odd prime power p* admits primitive roots was
established in Theorem 17.4.4. To finish the proof that (iii) implies (i), it therefore remains to show
that each number of the form n = 2p¥, where p is an odd prime, has a primitive root. To see this,
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observe that the integers relatively prime to 2p* are exactly the odd integers 1 < x < 2p* relatively
prime to p¥. Among those odd integers is a primitive root g modulo p¥. Its order modulo 2p* is

ordy,¢ (g) = ord,k (g) = p“~'(p = 1) = $(2p"),

so we see that g is also a primitive root of 2pX. m|

17.5 A Criterion for Congruences of Degree n

While we are primarily interested in the quadratic congruence
2 _
x“=a (mod p)

in this introductory course on elementary number theory, the techniques that we have developed so
far perfectly allow us to cover the nth degree congruence

x"=a (mod p).
The following theorem is a significant generalization of Euler’s Criterion.
Theorem 17.5.1. Consider an integer a and a prime p so that p 1 a. The following are equivalent:

(i) The congruence
x"=a (mod p)

has a solution.

(i1) The congruence

p—1
=0 d gcd -1
- =0 (mod ged(np = 1)

holds.
(iii) The congruence
-1
q & = | (mod p)
holds.

If the first condition holds, then the congruence x"* = a has exactly d := gcd(n, p — 1) solutions.

Proof by primitive roots. Let m := (p — 1)/ord,(a), and consider a primitive root g modulo p
such that
g™ =a (mod p).

Then the congruence
x"=a (mod p)
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is solvable if there exists an integer ¢ such that
g"=g" (mod p).

In other words, the first congruence is solvable if and only if the congruence
tm=m (mod p—1)

is solvable. It follows from Theorem 10.1.2 that this congruence is solvable if and only if d :=
gcd(n, p — 1) | m, and in this case there are exactly d solutions. Thus we have shown that /. is
equivalent to 2.

To show that 3. is equivalent to 2., consider the condition that

-1
a0 = 1 (mod p).

This holds if and only if % is an integer multiple of p — 1, which is equivalent to the condition

that gcd(n,p — 1) | m. O

Proof by Lagrange’s Theorem. For both directions of the proof, we will write d := ged(n, p — 1),
so that there are integers k and [/ such that kd = p — 1 and Id = n. It follows that k and [ are
relatively prime, so that there are integers u and v such that

ku+1lv=1.

To prove the forward implication, assume that x is an integer such that x” = a (mod p). Then
we have by Fermat’s Little Theorem

ak = xkn = xkld = (x”'l)l =1'=1 (mod p).

Since k = (p — 1)/gcd(n, p — 1), we have proven the forward implication.
For the converse, assume that a* = 1 (mod p). Now we can use the formula for the difference
of kth powers to write

k-1
D [ B R S _a)zxdiak—l—i.
i=0

Since the polynomial x”~! — 1 has exactly p — 1 roots modulo p, it follows that the number of roots
of each factor on the right-hand side is equal to its degree. In other words, the polynomial

xd—a

has d roots. Given aroot x? = a (mod p), we define y := x” where ku + Iv = 1. Then we have

n_ xvld alv al—ku =

y a(@d)™=al™ =a (mod p). m|
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Corollary 17.5.2. Consider an integer a such that ord,(a) | n. Then the congruence
x"=a (mod p)

is solvable if and only if
p=1 (mod ord,(a) - ged(n,p —1)).

Corollary 17.5.3. Consider a prime p and a natural number n relatively prime to p — 1. Then
every nth degree congruence
x"=a (mod p)

has a unique solution. In other words, the map x — x" is a bijection on Z] pZ.

In the following corollary, we show that the congruence x” = —1 (mod p) is solvable if and
only if the 2-adic valuation of 7 is strictly smaller than the 2-adic valuation of p — 1. In other words,
for any number n = 2m with m odd, the congruence

x"=-1 mod p
is solvable if and only if p =1 (mod 2]‘”).
Corollary 17.5.4. The congruence
x"=-1 (mod p)
is solvable if and only if vo(n) < vo(p — 1).
Proof. Since the congruence x" = —1 (mod p) is solvable if and only if

1
(_1)gcd<€rﬁ =1 (mod p),

it suffices to show that the exponent ﬁ
Indeed, this exponent is even if and only if min(v,(n), vo(p — 1)) = va(ged(n,p — 1)) <va(p—1).

This strict inequality holds if and only if vo(n) < vo(p — 1). ]

is an even integer if and only if v, (n) < vo(p — 1).
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Exercises

Starter Exercises

17.1 (a) Find the least primitive root g modulo 23, and give a table of the congruence classes of
its powers.
(b) Find all primitive roots modulo 23.
(c) Foreach k | ¢(23), find all elements of order kX modulo 23.
(d) For each integer 1,...,22, find its index base g modulo 23.

(e) Solve the linear congruence
8x =9 (mod 23)

using indices.
17.2 (a) Show that the number of solutions to the congruence

x"=a (mod p)

is either gcd(n, p — 1) or 0.
(b) Find, as Gauss did in article 60 of Disquisitiones Arithmeticae [Gaul986], all the
solutions to the congruence

x =11 (mod 19).

Routine-Building Exercises

17.3 In article 55 of Disquisitiones Arithmeticae [Gaul986], Gauss gives a second, more explicit
construction of primitive roots. In this exercise we will follow this method.
Consider a prime p and suppose that the prime factorization of p — 1 is

p-1l=4q{" gy
(a) By Lagrange’s Theorem it follows that for each prime g;, the congruence
p-1
x4 =1 (mod p)

has strictly fewer than p — 1 solutions, so there must exist a residue x which is not a
solution. Using such x, construct an element a; such that

ord,(a;) = q;".
(b) Show that
ord,(ai---ap,) =p -1

and conclude that the product a; - - - a, is a primitive root.
(c) Use this method to find a primitive root modulo 67.
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17.4 Consider a prime p # 3. Prove that the product of all primitive roots modulo p is congruent
to 1 modulo p.
17.5 (a) Consider a prime number p. Show that the following are equivalent:

(i) There is a solution to the congruence
x"=a (mod p)
of the form x = a¥.
(ii) The exponent n is relatively prime to ord, (a).
(b) Find a solution to the congruence

¥ =35 (mod 13)

of the form x = 5%,

Challenge Exercises

17.6 For any prime p and any integer a not divisible by p, show that the number of primitive roots
g modulo p such that

p-1
g @ =g (mod p).

is ¢(p — 1)/¢(ord,(a)). Conclude that such a primitive root always exists.

17.7 Consider aprime p > 2 and an odd number m. Show that the congruence x>'” = =1 (mod p)
is solvable if and only if p = 1 (mod 2"+!).

17.8 Consider a prime p of the form n” + 1. Show that

x" =a (mod p) is solvable = a"=1 (mod p).

17.9 [Gaul986, art. 81] Consider a prime p. Prove that the sum of all primitive roots satisfies the
following property:

Z g=pu(p—1) (mod p).

g primitive root (mod p)

17.10 [Gaul986, art. 78] For any positive integer n, show that

1—[ —1 (mod n) if there is a primitive root modulo 7,
X

0 1 (mod n)  otherwise.
<x<n

ged(x,n)=1

Hint: Use the Chinese Remainder Theorem to show that the number of integers 0 < x < n
such that x> = 1 (mod n) is a power of 2.
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Quadratic Residues

18.1 Quadratic Congruences

A quadratic congruence is a congruence of the form
ax’> +bx+c¢=0 (mod n),

where a is assumed to be relatively prime to n. To build intuition for such quadratic congruences,
let’s first recall how to solve a quadratic equation

ax2+bx+c:0,

where a # 0. Since we have assumed that a is nonzero, we may divide through by a to obtain the

equation
b c

x> —x=——.
a a

Completing the square, gives us the equation
ML > B ¢ b*-4dac
X+—| =—-——=—75—.
2a 4a* a 4a?

This equation has the familiar solutions

—-b +Vb? — 4ac
2a '

X =

The number A := b? — 4ac is called the discriminant of the quadratic equation ax? + bx + ¢ = 0.
For example, the quadratic equation x> — x — 1 has discriminant 5, and therefore its solutions are

1++V5

X = 3 .

Since the square root Vk of an integer k is an integer if and only if & is a perfect square, we obtain
the following theorem:

269
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Theorem 18.1.1. Consider the quadratic equation with integer coefficients

ax’> +bx+c = 0,
where a # 0. This equation has a rational solution if and only if the discriminant A = b* — 4ac is a
perfect square.

Now consider an odd prime p. Recall from Lagrange’s Theorem that a polynomial congruence
f(x) =0 (mod p)

has at most n solutions, where 7 is the degree of f. It follows that a quadratic congruence modulo
a prime has at most two solutions. In the following theorem, which is analogous to the previous
theorem, we show that a quadratic congruence modulo an odd prime is solvable if and only if its
discriminant is a perfect square.

The situation is slightly different for the prime p = 2, since the quadratic congruence

x> +x+1=0 (mod 2)

has no solutions, even though the discriminant is a perfect square. Indeed, as we will see in the
proof below, we will rely on the invertibility of 2 modulo p to solve general quadratic congruences
modulo p, which is not possible if p = 2.

Theorem 18.1.2. Consider a quadratic congruence

ax’> +bx+c¢=0 (mod p)
modulo an odd prime p, where a # 0 (mod p). This quadratic congruence is solvable if and only
if the discriminant A = b — 4ac is congruent to a square modulo p.

Proof. Given that p is an odd prime and thata # 0 (mod p), it follows that 4a is invertible modulo
p. The quadratic congruence in the statement of the theorem is therefore solvable if and only if the
quadratic congruence

4a*x? + 4abx + 4ac =0 (mod p)

is solvable. Given a solution of this quadratic congruence, we calculate
(2ax + b)? = 4a’x* + 4abx + b*
= 4a*x? + 4abx + dac + b — dac
= b? - dac

modulo p. This shows that the discriminant is congruent to a square modulo p.
On the other hand, if the discriminant is congruent to a square modulo p, as in

y? = b* —4ac (mod p),
then we find, entirely analogous to the case of quadratic equations, that
_ bty
" 2a
solves the quadratic congruence modulo p. We leave the verification that such x is indeed a solution
to the reader. |
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18.2 Quadratic Residues

We have seen in the previous section that in order to solve a quadratic congruence
ax’> +bx+c¢=0 (mod p)

modulo an odd prime p, we need to determine whether the discriminant A = b% — 4ac is congruent
to a square modulo p. In other words, we need to determine whether the discriminant is a quadratic
residue modulo p, which is defined as follows:

Definition 18.2.1. An integer a is said to be a quadratic residue modulo n if there is an integer x
such that the congruence

x> =a (mod n)

holds. If no such x exists, we say that a is a quadratic nonresidue modulo n.

For example, 0 and 1 are always quadratic residues modulo any natural number n. The number
0 is called the trivial quadratic residue, and we will mostly be interested in the nontrivial quadratic
residues.

Modulo 3, the only quadratic residues are 0 and 1, since the quadratic congruence x
2 (mod 3) does not have solutions. In other words, every square is either divisible by 3 or congruent
to 1 modulo 3.

Similarly, O and 1 are the only quadratic residues modulo 4; that is, no square number can be
congruent to 2 or 3 modulo 4. Indeed, the square of an even number is divisible by 4 and the square
of an odd number is congruent to 1 modulo 4.

Modulo 5 we find that 0, 1, and 4 are quadratic residues, and we can similarly list all the
quadratic. The following table lists the nontrivial quadratic residues modulo n from 4 to 10, where
0 is included as a quadratic residue if it is the square of a nonzero integer modulo #n:

2 =

n 4 5 6 7 8 9 10
quadratic residues 0,1 1,4 1,3,4 1,2,4 0,1,4 0,1,4,7 1,4,5,6,9

If we have access to a primitive root g of a prime p, then it is easy to characterize the nontrivial
quadratic residues of p as the even powers of g. This has the immediate corollary that exactly half
of the nonzero integers modulo p are quadratic residues.

Proposition 18.2.2. Consider a prime p with a primitive root g. An integer a # 0 (mod p) is a
nontrivial quadratic residue modulo a p if and only if it is an even power of g.

Proof. Consider a primitive root g modulo p. If a = g** (mod p), then a is clearly a quadratic
residue modulo p. On the other hand, if x> = ¢ (mod p), and x = g% (mod p), then we have
a=g* (mod p). |

Corollary 18.2.3. There are exactly (p — 1)/2 nontrivial quadratic residues modulo p in the set
{1,...,p — 1}, and exactly (p — 1)/2 quadratic nonresidues.
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We now turn our attention to the quadratic congruence x> = 1 (mod n). When n is not a
prime number, this congruence can have more solutions than its degree. For example, the quadratic
congruence x> = 1 (mod 8) has four distinct solutions. Similarly, the quadratic congruence
x?> =1 (mod 15) we have the four solutions

1°=1 (mod 15), 4?>=1 (mod 15), 11°=1 (mod 15), and 14>=1 (mod 15).

In the following theorem we give a precise count of the number of solutions to this quadratic
congruence.

Theorem 18.2.4. Consider a positive integer n, and let w(n) be the number of its prime divisors.
Then the number of integers 0 < x < n such that x> = 1 (mod n) is 2+ ywhere

0 ifnisodd,

—1 ifnis even but not divisible by 4,
if n is divisible by 4 but not by 8,

1 ifnisdivisible by 8.

eg(n) =

18.3 Legendre Symbols

The fact that the integers 1, 2, ..., p — 1 can be split into the sets of quadratic residues and quadratic
nonresidues, which are both of size (p — 1)/2, suggests there is an interesting dichotomy between
them. We can explore this further using primitive roots. If g is a primitive root modulo p, then the
quadratic residues are precisely those integers modulo p that can be written as an even power of g,
and the quadratic nonresidues are precisely those integers modulo p that can be written as an odd
power of g. Now recall that

gm gk — gm+k’
and that the parity of the sum of two integers can be expressed in terms of the parity of the summands:
The summands m and k have the same parity if and only if m + k is even, and likewise they have

distinct parity if and only if m + k is odd. This leads to the following multiplication rule of quadratic
residues:

Proposition 18.3.1. Consider two integers a and b modulo a prime p, both not divisible by p. Then
we have

(1) If both a and b are quadratic residues, or both are quadratic nonresidues, then ab is a
quadratic residue.

(i1) If one of a and b is a quadratic residue and the other is a quadratic nonresidue, then ab is a
quadratic nonresidue.
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The previous proposition was also observed by Adrien-Marie Legendre, who published his
findings in Essai sur la théorie des nombres in 1798 [Leg1798]. In this work, he also formulated the
quadratic reciprocity theorem, and attempted to prove it. His approach, however, relied on unproven
assumptions about certain functions, and was therefore incomplete.

Definition 18.3.2. The Legendre symbol of an integer a modulo a prime p, such that p { a, is
defined by

(a) . {1 if a is a quadratic residue modulo p
Mk

—1 if a is a quadratic nonresidue modulo p.

An immediate consequence of Proposition 18.2.2 is that

(ﬁ) = (=1)inde(@
p

for any primitive root g modulo p. Using Legendre symbols, we can reformulate Proposition 18.3.1
succinctly as the multiplicative law of Legendre symbols: For any two integers a and b, both not

holds. In fact, the Legendre symbol is the unique surjective function from the integers {1,...,p—1}
to {1, —1} with this property.

Theorem 18.3.3. Consider an odd prime p. Then the function a +— (%) is the unique surjective

function f : {1,...,p — 1} — {1, -1} preserving multiplication, in the sense that

f(ab) = f(a)f(b)
for every two nonzero integers a and b modulo p'.

Proof. We have already seen that the Legendre symbol is a surjective function preserving mul-
tiplication. Thus, our task is now to show that if f : {1,...,p — 1} — {1, -1} is any surjective
function preserving multiplication, then f is the Legendre symbol. Notice that for any primitive
root g modulo p, we have

(" =rfe".
since every element is of the form g, this implies that f(g) = —1. Then it follows that f(g™) =1
if and only if m is even, i.e., f(a) = 1 if and only if a is a quadratic residue modulo p. m|

Example 18.3.4. Recall that 2 is a primitive root of the prime 13, and is therefore a quadratic
nonresidue. Using that the square of a Legendre symbol is always 1, we can compute the Legendre

symbol (1) as follows:
i) = 5 () ) = () =

'In the language of group theory: The Legendre symbol is the unique surjective group homomorphism from the
group (Z/pZ)* of invertible elements modulo p to the 2-element group S5.
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Thus, 8 is a quadratic nonresidue modulo 13.
Similarly, using that 5 = 18 (mod 13) we can compute the Legendre symbol (15—3) as follows:

B)-(3)- GBI )

We see that 5 is also a quadratic nonresidue modulo 13.
On the other hand, again using that the square of a Legendre symbol is always 1, we can compute
the Legendre symbol () as follows:

3V _ (3 3 3\ (27 (1) _ |
13) \13)\13/\13) \13) " \13]
Thus we see that 3 is a quadratic residue modulo 13. In fact, we can readily verify that 3 =

4% (mod 13). The set of all nontrivial quadratic residues modulo 13 is

{1,3,4,9,10, 12}.

18.4 Euler’s Criterion

Euler had a deep understanding of numbers that are congruent to a square modulo a prime. In 1748
he had published a result now known as Euler’s criterion, which characterized precisely the squares
modulo a prime.

Theorem 18.4.1 (Euler’s Criterion). Consider an integer a and an odd prime p. Then we have
apr1 = (ﬁ) (mod p)
p

Proof. First note that Fermat’s Little Theorem gives that if b := ap%l, then
b*=1 (mod p).

This implies that b = +1 (mod p).
To prove the congruence in Euler’s Criterion, consider a primitive root g modulo p, and suppose
that g” = a (mod p). Then a is a quadratic residue if and only if m is even. Also, we note that

m(p —1)
2

is a multiple of p — 1 if and only if m is even. Thus we see that
a% =1 (mod p).

if and only if a is a quadratic residue, and it is congruent to —1 otherwise. O
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Using Euler’s Criterion, we can give a new proof of Theorem 13.5.1. In the language of quadratic
residues, Theorem 13.5.1 states that —1 is a quadratic residue modulo an odd prime p if and only if
p =1 (mod 4). In other words,

(—1):{1 if p=1 (mod 4)

p) |1 ifp=3 (mod 4).

This description of the quadratic character of —1 is also called the first supplement of the law of
quadratic reciprocity.

Proof of Theorem 13.5.1 using Euler’s Criterion. By Euler’s Criterion, it follows that —1 is a quadratic
residue modulo p if and only if

(=% =1 (mod p).

Since (—1)" =1 (mod p) if and only if m is even, it follows that —1 is a quadratic residue modulo
p if and only if pT_l is even, which holds if and only if

p=1 (mod 4). O

18.5 [Euler’s Prime-Generating Polynomial

In the early 1770s, Leonhard Euler devised his famous prime-generating polynomial

n?+n+41.

This polynomial produces prime numbers for any 0 < n < 39. Note that
40% + 40 + 41 = 40(40 + 1) + 41 = 41

isn’t prime anymore. We could easily imagine Euler pondering one day over the question of creating
a quadratic polynomial that returns a surprising amount of primes, and it would be natural to wonder
how he might have approached the problem.

Of course, there is no polynomial f(x) other than a constant polynomial such that f(x) is a
prime number for every integer x.

Proposition 18.5.1. If every value of a polynomial f(x) is prime, then f(x) is constant.

Proof. Suppose f(x) is a polynomial, all of whose values are prime. Then in particular p := f(0)
is prime. Then p | f(kp) for every integer k. Since each value of f is prime, it follows that
f(kp) = p for every integer k. This implies that f(x) — p has infinitely many roots, i.e., f(x) is
the constant polynomial with value p. O
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As a reasonable starting point for our search, we take three consecutive primes of the form
q, g +2, and g + 6.

By Lagrange’s Interpolation Theorem, there is only one polynomial f such that f(n) assumes those
values forn =0, 1, 2:
f(n)=n*+n+q.

Thus we are faced with the task of finding a prime ¢ such that n> + n + ¢ is prime for 0 < n < g - 2.
One thing to note is that if the number
n4+n+q

is composite for some 0 < n < g — 2, then it must have a prime factor below ¢. Indeed, we have
n’ + n + g < g? for such n, so if n> + n + q is composite for any 0 < n < g — 2 then it has an odd
prime factor p < g. In other words, we want to find an odd prime g such that

n?+n+qz0 (mod p)

for any odd prime p < g. Recall from Theorem 18.1.2 that such an incongruence holds if and only
if the discriminant A = 1 — 4¢ is a quadratic nonresidue modulo p for any odd prime p < ¢g. By
Euler’s Criterion, this observation finally narrows our search: We are looking for a prime g such
that »

(1-4¢9)7 = -1 (mod p)

for any odd prime p < g.

We can now discover prime-generating polynomials of the form n” + n + ¢ by computing the
integer 1 —4q (mod p) for all odd primes 3 < p < ¢. If we can find a prime p such that 1 — 4¢
is a quadratic residue mod p, we may discard that prime from the remainder of the search. This
process resulted in Table 18.1, which reveals that the following polynomials are prime-generating
polynomials, in the sense that they yield prime numbers for all inputs 0 < n < g — 2:

n?+n+2 n+n+11
n?+n+3 n?+n+17
n+n+5 n+n+41.

A deep theorem, the Baker—Heegner—Stark Theorem, shows that these are the only prime-generating
polynomials of the form n” + n + ¢. In other words, Euler had in fact found the quadratic polynomial
of this kind with the longest streak of primes! For this reason, the number 41 is sometimes called
Euler’s lucky prime.
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q\p‘?’ 5 7 11 13 17 19 23 29 31 37

5

7

11
13
17
19
23
29
31
37
41

W 1 N
W (@)}
—_—

(=]

[—

[E—

DO OO NDONDON
S B~
1
1
1
1
1

25 2 6 7 8 21 11 23 22

Table 18.1: Residues of the discriminant A = 1 — 4 modulo an odd prime p < ¢, for the polynomial
n>+n+q.

Computations of residues for g < p are omitted. A dash indicates that it was not necessary to compute this
residue, because a quadratic residue has been encountered earlier.
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Exercises

Starter Exercises

18.1 Find all the quadratic residues modulo:

(a) 23,
b) 29,
(c) 31,
(d) 37.

Confirm in each case that the number of quadratic residues is (p — 1) /2.
18.2 Compute the Legendre symbols

(a) (15—1)
®) (%)
© (3)-

18.3 Compute the Legendre symbols

@ (&)
® (7).
© (3)-
18.4 List all the odd primes below 100 of which:

(a) 2 is a quadratic residue,
(b) 3 is a quadratic residue,
(c) 5is a quadratic residue,
(d) 7 is a quadratic residue.

Routine-Building Exercises

18.5 Consider an integer a and a prime p. Show that —a is a quadratic residue modulo p if and
only if p divides a number of the form x? + ay?.
18.6 (a) Consider a prime p =1 (mod 4). Show that g is a primitive root modulo p if and only
if —g is a primitive root modulo p.
(b) Consider a prime p =3 (mod 4). Show that g is a primitive root modulo p if and only
if —g has order (p — 1)/2 modulo p.
18.7 Consider an odd prime p and an integer a.

(a) Show that if ord, (a) is odd, then (%) =1.
(b) Show that if (%) = —1, then ord, (a) is even.
(c) Give an example where p = 1 (mod 4) and where a is an integer of even order modulo

p, such that (%) =1
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p\g |3 5 7 11 13 17 19 23 29 3I
3 /-1 2 1 2 1 2 1 1 2
511 - 1 4 1 1 2 1 2 4
7 /1 1 - 2 3 1 1 2 6 1
1ml2 2 1 - 1 1 1 10 1 2
134 3 1 1 - 2 1 2 4 3
7 /1 1 1 1 4 - 2 1 1 1
91 2 6 6 1 2 - 2 1 3
2312 1 1 1 2 1 1 2 2
29 /1 2 4 1 2 7 1 4 - 1
31 /1102 1 1 1 2 3 3 -

Table 18.2: The value (p — 1)/ord,(g), with p and g ranging over the first ten odd primes. Note that the
value 1 indicates that ¢ is a primitive root modulo p.

(d) Show thatif p =3 (mod 4) and ord,(a) = 2k is an even number, then we have

-

p
and a* = =1 (mod p). Thus, in the case where p = 3 (mod 4), the quadratic residues
are precisely the integers of odd order, and the quadratic nonresidues are precisely the
integers of even order.

(e) Show thatif p =1 (mod 4) and ord,,(a) is even, then (%) = 1 if and only if ord,, (a) |
p-l

7
(f) Combine the previous parts to show that for any odd prime p and for any integer
a #0 (mod p), we have the identity

(g) - (_1)0r§,;(1a) .
p

Table 18.2 lists the values of #_(la), where p and g range over the first ten primes.

(g) Using Exercise 17.6, give a direct proof of the identity
(ﬁ) — (1)@
p
18.8 Consider an odd prime p, an integer a, and an integer m. Show that

a = (%) (mod p) =3 m = pT—l (mod ord,(a)) .
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Challenge Exercises

18.9 Recall that a Fermat prime is a prime of the form F, := 2" + 1. Show that the following are
equivalent for a prime number p:

(1) The prime p is a Fermat prime.
(i) Every quadratic nonresidue modulo p is a primitive root.

18.10 (a) Show that (_73) = lifandonlyif p =1 (mod 3).
(b) For any finite set py, ..., pi of primes congruent to 1 modulo 3, use the prime divisors
of

n=(p1---p)°+3

to show that there is a prime ¢ = 1 (mod 3) that is not already among the primes
P1,-..,pk. Conclude that there are infinitely many primes congruent to 1 modulo 3.
18.11 (a) Show that (%) = () holds for every prime g # 5. In other words, which two congruence
classes 1, 2, 3, or 4 modulo 5 contain the primes g such that 5 to be a quadratic residue
modulo g?
(b) For any finite set of primes py, ..., px congruent to 1 modulo 5, use the prime divisors
of

(2p1---pr)t+5

to show that there is a prime ¢ = 1 (mod 5) that is not already among the primes
P1,- .-, Pk- Conclude that there are infinitely many primes congruent to 1 modulo 5.
18.12 Consider an odd prime p.

(a) For any positive integer m and any integer a, show that a is a quadratic residue modulo
p™ if and only if a is a quadratic residue modulo p.
(b) Conclude that there are exactly
(p—Dp"
2
that are not divisible by p.

quadratic residues modulo p”*!

18.13 Recall that a prime p is said to be a Sophie Germain prime if the number ¢ = 2p + 1 is prime.

(a) Show that p is a Sophie Germain prime if and only if every quadratic nonresidue modulo
q apart from —1 is a primitive root modulo q.

(b) Show thatif p = 1 (mod 4) is a Sophie Germain prime, then 2 is a primitive root
modulo g.

(c) Show thatif p =3 (mod 4) is a Sophie Germain prime, then —2 is a primitive root
modulo g.



Chapter 19
Quadratic Reciprocity

19.1 The Quadratic Character of 2

In this section we consider the question for which odd primes p we have that 2 is a quadratic residue.
By Exercise 18.7, this is equivalent to the question for which primes p we have

p —_—
ord,(2)

=0 (mod 2).

In the following table we list the quantity #_(12) for the odd primes below 50:

p |35 7 11 13 17 19 23 29 31 37 41 43 47
-1
St t21 12 1 2 1 6 1 2 3 2

This table shows that 2 is a quadratic residue modulo p for the primes
7, 17, 23, 31, 41, 47, ....

Unlike the case where we were seeking to characterize the primes for which —1 is a primitive root,
these primes are not organized according to their residue class modulo 4. The pattern is slightly
more complicated. However, we may observe that the primes for which 2 is a quadratic residue all
happen to be close to a multiple of 8, while the primes for which 2 is a quadratic nonresidue are
further from the multiples of 8. This turns out to be the right idea: The number 2 is a quadratic
residue modulo p if and only if p is of the form 8k + 1.

Note also that 2 is a primitive root if and only if ord,(2) = p — 1, so we see from the previous
table that 2 is a primitive root modulo p for the primes

3,5, 11, 13, 19, 29, 37, ....

However, it is not quite true that 2 is a primitive root modulo p whenever it is a quadratic nonresidue
modulo p: The first prime for which 2 is neither a quadratic residue nor a primitive root is 43.

281
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Theorem 19.1.1. The Legendre symbol of 2 modulo p satisfies the identity
(%) - (4)@,
p

In other words, 2 is a quadratic residue if and only if p = +1 (mod 8), and it is a quadratic
nonresidue if and only if p = +3 (mod 8).

Before we start the proof, recall that one of the proofs of Fermat’s Little Theorem was obtained
by multiplying all the numbers 1, ..., p — 1 with an integer a to obtain the congruence

a’ Y (p-1!=(p-1)! (mod p).
Since (p — 1)! isn’t divisible by p, it is invertible modulo p and thus we found that a”~! =
1 (mod p).
Proof. In this proof, we will write P := % so that 2P = p — 1. By Euler’s Criterion we have

(%) = 2" (mod p), which gives us the congruences

(%)P! =2PpP1=2.4..... (2P) (mod p)

We proceed by carefully analyzing this product of all the even positive integers below p. If we

define the numbers
5] ]
§i=|— and = ,

4 4
so that s + ¢ = P, then we can partition the set of all even positive integers below p into two subsets

S:={2k|1<k<s} and T:={2k|s+1<k<P},

so that S consists precisely of all the even positive integers up to and possibly including P, and T
consists of all the larger even integers up to and including 2P. Note that the set S has s elements
and the set T has exactly ¢ elements.

The key observation is that for every integer y in 7 there is a unique odd integer 1 < x < P so
that y = p — x, which determines a bijection. Thus, taking the product modulo p of all the even
integers up to p amounts to taking the product of all the integers 1 < x < P with a sign change for
every odd integer, of which there are ¢. In other words, we have the congruence

(%)P! =2-4..... 2P = (=1)'P! (mod p).

Since P! is not divisible by p we apply the cancellation law to obtain

-
p

We conclude the proof by observing that the parity of ¢ is determined according to the following
cases:

t

0 (mod 2) if p=+1 (mod 8)
I (mod 2) ifp=4+3 (mod 8).
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‘lst 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1117 41 73 8 97 113 137 193 233 241
313 11 19 43 59 67 83 107 131 139
=55 13 29 37 53 61 101 109 149 157
717 23 31 47 71 79 103 127 151 167

Table 19.1: The first ten primes congruent to » modulo 8, forr = 1, 3,5, 7.

The previous theorem is also known as the Second Supplement of the law of Quadratic Reci-
procity. An immediate corollary of the second supplement is that

-2 _(—1) 2\ |1 ifp=1lor3 (mod 8)
p] \p/\p) ]-1 if p=5o0r7 (mod 8).
Since primitive roots are always quadratic nonresidues, we obtain the following corollary. Artin
conjectured that there are infinitely many primes p for which 2 is a primitive root. More generally,

he conjectured that for any integer a that is neither —1 nor a perfect square, there are infinitely many
primes for which a is a primitive root.

Corollary 19.1.2. If 2 is a primitive root modulo p, then p = +3 (mod 8).

The second supplement can be used to show that there are infinitely many primes of the form
8k + r for any odd number 0 < r < 8. We have already seen in Theorem 13.6.1 that there are
infinitely many primes congruent to 1 modulo 2". In particular, there are infinitely many primes of
the form 8k + 1. It remains prove the analogous claims for the residue classes 3, 5, and 7 modulo 8.
We will be following Sierpiniski [Sie1988]. The first ten primes congruent to » moduo 8 for each
odd residue class r are given in Table 19.1.

Theorem 19.1.3. There are infinitely many primes congruent to 3 modulo 8.

Proof. If a is an odd integer, then a> = 1 (mod 8) so that
Ny :=da*+2

is congruent to 3 modulo 8. Not all prime divisors of N, can be congruent to +1 modulo 8, since if
they were, then N, would likewise be congruent to +1 modulo 8. Therefore N, has a prime divisor
q so that
g = +3 (mod 8).

Since g | a® + 2, it follows that —2 is a quadratic residue modulo ¢, so ¢ # —3 (mod 8). Thus it
follows that ¢ = 3 (mod 8).

For a suitable choice of a, let p, be the nth prime number, so that p; =2, p» = 3, p3 =5 and
so forth. Then we define

a = pap3--:Pn

so that any prime divisor of N, is larger than p,. Since N, has a prime divisor congruent to 3
modulo 8, it follows that there are arbitrarily large such primes. |
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Theorem 19.1.4. There are infinitely many primes congruent to 5 modulo 8.

Proof. If a is an odd integer, then a> = 1 (mod 8) so that
N, = a’+4
is congruent to 5 modulo 8. As before, there must be a prime divisor g of N, so that
q = +3 (mod 8).

Since ¢ | a® + 4, it follows that —4 is a quadratic residue modulo ¢. This implies that —1 is a
quadratic residue modulo ¢, so that ¢ = 1 (mod 4). Since we assumed that ¢ # 1 (mod 8), it
follows that ¢ = -3 (mod 8).

For a suitable choice of a, define

a=p2p3---Pn

so that any prime divisor of N, is larger than p,. Since N, has a prime divisor congruent to 5
modulo 8, it follows that there are arbitrarily large such primes. O

Theorem 19.1.5. There are infinitely many primes congruent to 7 modulo 8.
Proof. The idea of the proof is to find a natural number N of the form
N =2a* - b,

sothat N = —1 (mod 8) and N is relatively prime to any m < n. Assuming that n > 1, a suitable
choice of a and b is a := n! and b := 1. Indeed, in this case a is even, so that 2a>—1 = —1 (mod 8).
Under these assumptions, N will have a prime factor ¢ # 1 (mod 8), and furthermore we will
have
2a* = b* (mod q).

Since a? and b? are clearly quadratic residues modulo g, it follows that 2 is a quadratic residue,
implying that ¢ = +1 (mod 8). However, since we have chosen g so that ¢ # 1 (mod 8), it
follows that ¢ = —1 (mod 8). Furthermore, since ¢ is relatively prime to any m < n, it follows
that n < g, which shows that there are arbitrarily large primes ¢ = —1 (mod 8). O

19.2 The Statement of Quadratic Reciprocity

We have already established several facts about Legendre symbols. The Legendre symbol is

p p p ‘
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p\g |3 5 7 11 13 17 19 23 29 3]
3 -+ - + - + - - 4+
S | - -+ - - + - + +
7T |- - + - - - 4+ + -
T |+ + - - - - 4+ - +
3+ - - - + - 4+ + -
17 |- - - - + + - - -
9 /- + + + - + + - -
23 |+ - - - + - - +  +
29 |- + + - + - - 4+ -
31 |- + + - - - 4+ - =

Table 19.2: The sign of the Legendre symbol (%), ranging over pairs of distinct odd primes p and gq.

The Legendre symbol (_71) can be computed according to whether p is congruent to 1 or 3 modulo
4:
(—1)_ 1 ifp=1 (mod 4)
p)] |-1 ifp=3 (mod 4).

The Legendre symbol (%) can likewise be computed according to whether p is congruent to +1 or
+3 modulo 8:

p -1 if p=4+3 (mod 8).

We need one final piece to effectively compute Legendre symbols: a way to determine the Legendre
symbol () when g is an odd prime. The recipe for determining () is given by the law of quadratic
reciprocity.

To build some intuition for what the law of quadratic reciprocity should assert, we recall from
Exercise 18.7 that the Legendre symbol of @ modulo p can be computed by

(ﬁ) - (_1)@%,
p

Thus, the Legendre symbol of a modulo p depends only of the parity of the quantity

(g) :{1 if p==+1 (mod 8)

p—1
ord,(a)’

which gives us a fairly quick way of determining the Legendre symbol () for small odd primes p
and g. We listed signs of the Legendre symbols of ¢ modulo p in Table 19.2.

The patterns in this table might not be immediately apparent. However, those who did Exer-
cise 18.11 might spot that column 5 is identical to row 5. Looking for more identical columns and
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rows, we create a new table by comparing the entry in row i and column j in Table 19.2 with the
entry in row j and column i. When these two entries are equal, we mark it with a solid black circle
(@), and if they are different we mark it with an open circle (O). This results in the following table:

p\g |3 5 7 11 13 17 19 23 29 31
3 ®e O O e @ O O @ O
5 1@ e 6 6 06 06 0 0 O
710 @ O @ @ O O @ O
1m0 @ O ® 6 O O @ O
3 @ ®© @ 0 ® 6 6 0 O
17 &© @ @ @ @ ® 6 0 ©
910 @€ OO @ @ O @ O
2210 @O O @ @ O ® O
29 © 6 6 06 06 0 O ®
31O @O O @@ O O @

Using this table, we quickly spot that columns 5, 13, 17, and 29 are identical to rows 5, 13, 17,
and 29, respectively, which means that these columns were also identical to their respective rows in
Table 19.2. Something special is going on with the primes

5, 13, 17, 29,
and something seems to be off about the primes
3,7, 11, 19, 23, 31.

We are very familiar with this grouping of the primes by now: The first set of primes are all
congruent to 1 modulo 4, while the second set of primes are all congruent to 3 modulo 4. These
observations suggest the following:

(1) If at least one of p and g is congruent to 1 modulo 4, then we have
o))
p q
(i1) If both p and g are congruent to 3 modulo 4, then we have
4--(9
p q

Legendre and Gauss spotted these patterns towards the end of the 18th century. They formulated it
succinctly as follows:
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Theorem 19.2.1 (The Law of Quadratic Reciprocity). For any two distinct odd primes p and q we

have
g0
P/ \q

Example 19.2.2. The law of quadratic reciprocity is incredibly effective in computations of Legendre
symbols. For example, since 17 and 101 are congruent to 1 modulo 4, we have

17\ (101} (16) [4 4 _ 1
101) \17 ) \17) \17)\17]
Indeed, it turns out that 442 = 17 and 572 = 17 modulo 101.

On the other hand, both 23 and 43 are congruent to 3 modulo 4, so the law of quadratic reciprocity
tells us that

BV (B (A (AN (2 (2 (B (3 o
43) \23)  \23) \23)\23)  \23) \s5)  \5) *—
In this case, it turns out that 182 = 23 and 25% = 23 modulo 43.

As a final example, for good measure, note that 31 and 83 are both congruent to 3 modulo 4.
Using the law of quadratic reciprocity we obtain that

3151~ -

The quadratic residuosity of an odd prime ¢ modulo a distinct odd prime p determines some
important restrictions on the form of the prime p. We spell these out in the following theorem,
which is essentially a reformulation of the law of quadratic reciprocity.

Theorem 19.2.3. Consider two distinct odd primes p and q. The following two statements hold:

(1) If p =1 (mod 4), then q is a quadratic residue modulo p if and only if there exists an odd
integer 0 < a < q such that
p =a® (mod 4q).

(i) If p =3 (mod 4), then q is a quadratic residue modulo p if and only if there exists an odd
integer 0 < a < q such that
p = —a’ (mod 4q).

Proof. Before proving each statement, we note that for any u # 0 (mod g), if the quadratic
congruence
x*=u (mod q)

is solvable, then it has two solutions. Of these two solutions, one is even and the other is odd. Thus,
if it is solvable, we can always pick an odd solution.
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For the first claim of the theorem, assume that p = 1 (mod 4). By the law of quadratic
reciprocity, it follows that
5)-(3)
p q

Furthermore, (%) = 1 if and only if there exists an odd integer 0 < a < ¢ such that p = a> (mod gq).

Furthermore, since a is odd and p = 1 (mod 4), it also follows that p = a®> (mod 4). Thus we
see that (;1—7) = 1 if and only if there exists an odd integer 0 < a < ¢ such that

p=a’ (mod 4q).

For the second claim, assume that p = 3 (mod 4). By the law of quadratic reciprocity, it

follows that
(2) (2) - ()T = (c)T = (__1)
Pl \q q

By rearranging the terms, we find that () = (%), and thus there is an odd integer a such that
__ 2
p=-a (mod q).

Since a is assumed to be odd and p = 3 (mod 4), we find furthermore that —a*> = p (mod 4).
We conclude that (%) = 1 if and only if there is an odd integer 0 < a < g such that

p =—a® (mod 4q). O

The previous theorem can be used at once to characterize the primes p for which 3 is a quadratic
residue modulo p. Taking ¢ = 3 in the previous theorem, we find that 3 is a quadratic residue
modulo p if and only if p is of the form 12k + 1, since the only odd quadratic residue modulo 3 is
1. For any odd prime p # 3, we have thus shown that

3y _J1 ifp=+1 (mod 12),
p]  |-1 ifp=4+5 (mod 12).

Likewise, we can characterize the primes p for which 5 is a quadratic residue modulo p. Taking
g = 5 in the previous theorem, we find that 5 is a quadratic residue modulo p if and only if p is of
the form 20k + 1 or 20k + 9, since the two odd squares modulo 5 are 1% and 32. For any odd prime
p # 5, we have thus shown that

5\ )1 ifp=+1 (mod 10),
-1 ifp=+3 (mod 10).
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19.3 Gauss’s Lemma

While it is customary to consider the standard residue classes modulo an odd prime p to be the
integers 0 < r < p, we have now the occasion to consider the complete residue system of integers
between —pT_l and pT_l.

Definition 19.3.1. The least absolute residue of an integer a modulo a natural number 7 is the

unique integer
n n
2 2

such that x = @ (mod n). We will write | a],, for the least absolute residue of @ modulo n, and we
will write | a]|, for its absolute value.

Thus, the least absolute residue of an integer @ modulo an odd prime p, which is what we will
be using this concept for, is the unique integer
p—1 p—1

<x<
2 ==

such that x = @ (mod p). For example, the least absolute residue of 4 modulo 7 is —3, the least
absolute residue of 6 modulo 13 is 6, and the least absolute residue of 12 modulo 13 is —1. In the
following table, we list the least absolute residues modulo 11:

a |01 2345 6 7 8 9 10
laln |0 1 2 3 45 =5 -4 -3 -2 -l

If we consider an integer a relatively prime to an odd prime p, then multiplication by a defines
a bijection on Z/pZ. It follows that the function

-1 -1
x - lax], {O,...,p—l} — {—pT,...,pT}
is also a bijection. Restricting this bijection to the set {1, ..., p—;l}, we obtain an injective function

xr—>[ax]p:{1,...,177_1}—>{—p—_1,...,1%1}.

The following lemma shows that every 1 < x < pT_l occurs exactly once as the absolute value of

any number of the form |ax],.

Lemma 19.3.2. The function

ra:{l,...,pTA}e{l,...,’%l}

given by ry(x) := |Lax], is a bijection.
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Proof. Since r, is a function between two sets of finite size pT_l, it suffices to show that r, is
injective. To this end, consider x and y such that r,(x) = r,(y). Since the function x + [ax]), is
injective, this implies that

Lax-lp = _l_ay-lp
or, equivalently, that ax — ay is divisible by p. Since a is relatively prime to p, this implies that
x — y is divisible by p, i.e., that x = y. |

Lemma 19.3.3 (Gauss’s Lemma). Consider an odd prime p and an integer such that p {1 a. Define
U to be the number of elements x among the residue classes

a, 2a, 3a, ..., %a (mod p),

such that | ax], is negative. Then we have

-cor
p

Proof. Write P := (p — 1)/2. Then we have that p 1 P!, so suffices to show that
a
(—) P! = (-1)*P! (mod p).
p

By Euler’s Criterion we have (%) = a® (mod p), so we obtain that
Y\ pr=aPpP
; P!=a" P! (mod p).

Redistributing the P factors of a of the exponent a” over P!, and using Lemma 19.3.3, we obtain:

atP! = (la)(2a) - - - (Pa) = (-1)*P! (mod p). O

19.4 Eisenstein’s Proof of the Law of Quadratic Reciprocity

Gauss was the first to prove the law of quadratic reciprocity in 1796, when he was only 19 years
old. This proof was included in his seminal work, Disquisitiones Arithmeticae, published in 1801.
Gauss was very fond of this result, and throughout his life-time he would publish seven different
proofs.

The proof we will present here is due to Gotthold Eisenstein, which he published in 1844. It is
celebrated for its simplicity and for the insightful perspective it provides on geometric aspects of
the quadratic reciprocity law.

In Eisenstein’s proof of the law of quadratic reciprocity, we will make use of the floor function
x — |x], which is a function from the rational numbers or the real numbers, to the integers. The
integer

Lx]
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Figure 19.1: In Eisenstein’s proof of quadratic reciprocity, we count the pT_l by qT_l lattice points in the
marked rectangle as the sum of the number lattice points below the diagonal and the number of lattice points
above the diagonal.

is the largest integer below x. In other words, its defining property is that the floor function satisfies
the logical equivalence
k < |x] = k <x

for every integer k and every rational or real number x. Concretely, we have the following examples:

ERNER

Eisenstein’s Proof of The Law of Quadratic Reciprocity. By Gauss’s Lemma it suffices to show
that

p—1qg-1

(_1)u(q,p) (_1)/1(17,4) = (-7 7.

In other words, we have to show that

-1g-1
(g, p) +p(p,q) = ——=—>— (mod 2).
This suggests that there should be a way of splitting a set of pT_lq—;l points into two subsets S and
T, so that their respective number of elements have the same parities as the quantities u(q, p) and

u(p, q). There is indeed such a way. Figure 19.1 shows Eisenstein’s setup in case of the primes
p=17and g = 13.
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Consider the set of pT_l by q—;l lattice points in the positive quadrant of the plane; that is, the
points with positive integer coordinates within the rectangle spanned by the four points

(0.0). (50). (5.3), and (0.3).

We partition these lattice points by the diagonal of the rectangle: The set of lattice points below
the diagonal is S, and the set of lattice points above the diagonal is 7. Since the diagonal of this
rectangle is given by the line y = Zx, there is no point with positive integer coordinates on the
diagonal, so there is no ambiguity as to which part a lattice point belongs to.

Now observe that the number |S| of lattice points in the set S is given by

p-1

-5

k=1

This formula is obtained by first recognizing that for each 1 < k < p—gl a lattice point of the form
(k, i) is in the set S if and only if
1<i<—k.
p
The number of such lattice points is |_k—qJ, so the total number of elements in S is obtained by
summing up all of these totals. Similarly, the number |T'| of lattice points in the set T is given by

-1

=52

k=

|>-Q
(S

—_

Thus, it remains to prove that

p-1 1

V‘—q|su<q,p> (mod 2)  and Z{"—p|su<p,q) (mod 2)
Py P

We will verify these congruences separately in the following lemma. O

Lemma 19.4.1. Consider an odd prime p and an odd integer a not divisible by p, and let u(a, p)
be the quantity defined in Gauss’s Lemma. Then
p-1
2

V‘—"| — u(a,p) (mod 2).
k=1 p

Proof. For each k there are unique integers g and ry such that ka = qxp + ry, where

-1 -1

2 2
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It follows that
{ka| _ax ifry >0
pl lax—1 ifrg<0.
Adding up the integers L%“J therefore amounts to adding up the integers g, and subtracting the
number of integers k such that r is negative:

-l -l
2 2
ka
{—| = > qx—p(a,p).
k:l k=1

To complete the proof, it therefore suffices to show that

p-1
2

gr =0 (mod 2).
k=1

To prove this, recall from Lemma 19.3.2 that the map k +— |r¢| is a permutation of the set
{1,..., p—;l}. In other words, every integer from 1 to p—;l occurs exactly once as an integer of the
form |r|. Since the parity of an integer is unchanged by taking its absolute value, we have

p-1
2

S

-1 p-1
2

lri| = k (mod 2).

I\)|

Tk

bl
—_
=~

=1

>~
Il
—_

On the other hand, observe that since a and p are assumed to be odd, we have the congruences
k=ka=qrp+ry=qr+r; (mod 2).

Thus we obtain the congruences

p-1 p-1 p-1 p-1 p-1
2 2 2 2

2 2 2 2 2

k qk+2k(mod 2).

qi t Tk
=1 k=

=~

=1

>~
[
=~
—_
>~
—

Subtracting }’; k from both sides, we find that }}; gy = 0 (mod 2). O
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Exercises

Starter Exercises

19.1 Compute the values of the following Legendre symbols:

101 137 113 139
) () () = (55

19.2 Compute the values of the following Legendre symbols:

113 131 311

m) - \317) and 3/
19.3 Compute the values of the following Legendre symbols:

199 919 991

m) , 91/ and 199/
19.4 Compute the values of the following Legendre symbols:

337 373 733

ﬁ) , 733 and 337

19.5 Consider a prime p > 3. Show that

6\ |1 ifp=+£1,£5 (mod 24),
p) |-1 ifp=+7,+11 (mod 24).

19.6 Consider an odd prime p # 5. Show that

10y |1 if p==+1,+3,+9,+13 (mod 40),
p)] |-1 ifp==+7,£11,+17,£19 (mod 40).

Routine-Building Exercises

19.7 Determine whether the following quadratic congruences have solutions:

(@) x> +x+1=0 (mod 13).
® x*+x+3=0 (mod 7).
(c) 2x2+3x+5=0 (mod 17).
(d) x> +4x+8=0 (mod 23).
(e) 2x> +3x+4=0 (mod 11).
(f) 4x2+7x + 14 =0 (mod 31).
19.8 Show that 2 is a quadratic residue modulo any prime divisor of the nth Fermat number
F,=2%"+1,forn>2.
19.9 Consider a prime p such that ¢ :=2p + 1 and r := 2(2p + 1) + 1 = 4p + 3 are both prime.
Prove that
ord,(2) = q.
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Challenge Exercises

19.10 Show that if the nth Fermat number F,, = 2*" + 1 is prime, then 3 is a primitive root modulo
F,.
19.11 Consider an odd prime p. Show that the following are equivalent:

(i) The Mersenne number M, = 2P — 1 has a common prime divisor with 2p + 1.

(i) The prime p is a Sophie Germain prime, meaning that the number 2p + 1 is prime, and
furthermore p = 3 (mod 4).

Conclude that
My, M3, Mg3, M131, Mi79, and Mjg;

are all composite.
19.12 (a) Show that for any prime p = 3 (mod 4) greater than 3, there exists a prime ¢ < p such
that p is a quadratic nonresidue modulo g.

(b) Show that for any prime p = 1 (mod 4), there exists a prime ¢ < p such that p is a
quadratic nonresidue modulo ¢g. Hint: First show that there exists a quadratic nonresidue
O<a<psuchthata =1 (mod 4).

19.13 (a) For any integer a > 2, let p be a prime factor of a* — a® + 1. Show that

ord,(a) = 12.

(b) Use a suitable choice of a in
N, = a®+1

to show that there are infinitely many primes congruent to 1 modulo 12.
(c) For each r in the set {5,7, 11}, show that there are infinitely many primes congruent to
r modulo 12.
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Chapter 20

Conjectures in Elementary Number Theory

Number theory is known for its wealth of open problems that have inspired mathematicians and
enthusiasts to learn more about the subject. Some of the most famous problems, such as Goldbach’s
conjecture and the Twin Prime conjecture have remained elusive for centuries. We state here some
open problems and conjectures in elementary number theory.

There are many more open problems, specifically concerning analytic number theory and
advanced branches of algebraic number theory, which require tools beyond the scope of this text in
order to be formulated. For a more comprehensive overview of the open problems and conjectures
in number theory, see [Guy2004].

20.1 Conjectures About the Infinitude of Certain Classes of
Primes

One of the oldest and most famous open problems about the infinitude of certain classes of primes
is the Twin Prime Conjecture. A pair of twin primes is a pair of primes p and g such that g — p = 2.
In Exercise 11.11 we stated some elementary congruences satisfied by pairs of twin primes.

Conjecture 1 (Twin Prime Conjecture). There are infinitely many twin primes.

Although the study of twin primes dates back to antiquity, the first publication in which the twin
prime conjecture was explicity stated was by Alphonse de Polignac [Pol1846]. He also speculated
about a generalization of the Twin Prime Conjecture.

Conjecture 2 (de Polignac’s Conjecture). For every even number n, there are infinitely many pairs
of primes p and q such that g — p = n.

A Sophie Germain prime is a prime p such that 2p + 1 is also prime. Sophie Germain studied
these primes in the context of Fermat’s Last Theorem. In Exercise 11.12 we established an elemen-
tary congruence regarding Sophie Germain primes. In Exercise 18.13 we characterized Sophie
Germain primes in terms of their primitive roots.
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Conjecture 3 (Infinitude of Sophie Germain primes). There are infinitely many Sophie Germain
primes.

Dickson’s conjecture generalizes both conjectures of de Polignac and the conjectured infinitude
of the Sophie Germain primes. Recall that we introduced the concept of fixed divisors in Section 15.4,
where we proved Hensel’s Fixed Divisor Theorem.

Conjecture 4 (Dickson’s Conjecture). Consider a finite set of linear functions f;(x) = a;x + b;
indexed by 1 < i < n, which is admissible in the sense that their product

n
[ ]A)
i=1
has no fixed divisors. Then there are infinitely many positive integers x such that each f;(x) is prime

foralll <i<n.

One can also ask about the infinitude of primes that can be presented as the value of some
polynomial. The simplest such conjecture is a conjecture of Landau.

Conjecture 5 (Landau’s Conjecture). There are infinitely many primes of the form n* + 1.
Landau’s conjecture is generalized by the following conjecture Bunyakovsky.

Conjecture 6 (Bunyakovsky’s Conjecture). Consider an irreducible polynomial f(x) with integer
coefficients, such that the leading coefficient is positive. If the fixed divisor of f(x) is 1, then f(x)
is prime for infinitely many input values x.

Schinzel’s Hypothesis H is a sweeping generalization of both Dickson’s conjecture and Bun-
yakovsky’s conjecture.

Conjecture 7 (Schinzel’s Hypothesis H). Consider a finite set of nonconstant irreducible polyno-
mials f;(x) with integer coefficients, such that their product

[ 150
i=1

has no fixed divisors. Then there are infinitely many integers x such that each f;(x) is prime.

There are many more conjectures on the infinitude of primes of a certain form, or primes
satisfying a certain condition. The most famous such conjecture asserts the infinitude of the
Mersenne primes.

Conjecture 8 (Infinitude of Mersenne primes). There are infinitely many primes of the form
M, =27 —1.
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Conjecture 9 (Infinitude of Wilson primes). There are infinitely many Wilson primes; that is, there
are infinitely many primes p such that

(p—-Dl=-1 (mod pz) .

Conjecture 10 (Infinitude of Wolstenholme primes). There are infinitely many Wolstenholme
primes; that is, there are infinitely many primes p such that

2p -1

(p )El(modp4).
p—1

Conjecture 11 (Infinitude of Fibonacci primes). There are infinitely many Fibonacci primes.

A prime number p is said to be balanced if the gap to its preceding prime is equal to the distance
to its succeeding prime.

Conjecture 12 (Infinitude of balanced primes). There are infinitely many balanced primes.

Conjecture 13 (Artin’s Conjecture). If a is a nonsquare integer distinct from —1, then there are
infinitely many primes p for which a is a primitive root modulo p.

20.2 Conjectures About Exceptional Primes

Conjecture 14 (Finiteness of Fermat primes). There are only finitely many primes of the form
F, =22 +1

Conjecture 15 (Finiteness of Wieferich primes). There are only finitely many Wieferich primes.

Although it is conjectured that there are only finitely many Wieferich primes, it has not yet been
proven that there are infinitely many non-Wieferich primes.

Conjecture 16 (Infinitude of non-Wieferich primes). There are infinitely many non-Wieferich
primes.

Conjecture 17 (Finiteness of Wal-Sun—Sun primes). There are only finitely many Wal-Sun—Sun
primes; that is, there are only finitely many primes p such that p* divides the (p — (%))th Fibonacci
number. Here, the number (%) is the Legendre symbol of p modulo 5.

20.3 Conjectures About Gaps Between the Primes

Conjecture 18 (Legendre’s Conjecture). For every positive integer n, there is at least one prime
between n? and (n + 1)>.

Conjecture 19 (Andrica’s Conjecture). If p and q are two consecutive primes, then \J[q —+/p < 1.

Conjecture 20 (Cramér’s Conjecture). The asymptotic growth of the gap from a prime p to the
next prime is O (log(p)?).
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20.4 Conjectures About Conditions for Primality

Conjecture 21 (Lehmer’s Conjecture). If ¢(n) | n — 1, then n is prime.

Conjecture 22 (The Agoh—Giuga Conjecture). An integer n > 1 is prime if and only if the

congruence
n—1

Z k"'=-1 (mod n)
k=1
holds.
Conjecture 23 (The Bateman—Selfridge—Wagstaff Conjecture (The New Mersenne Prime Conjec-

ture)). Let p be an odd natural number. If two of the following three conditions hold, then so does
the third:

(i) There is an integer k such that p = 2% + 1 or p = 4F £ 3.
(i1) The Mersenne number M), = 2P — 1 is prime.
(iii) The number (2P + 1)/3 is prime.

For the following conjecture, let p, be the nth prime number, starting with pg := 2, p; := 3,
and so on. Define the nth primorial by

n#:=fjpﬁ
i=0

Conjecture 24 (Fortune’s Conjecture). For each n, if my is the least integer m such that p,# + m is
prime, then mq is prime.

20.5 Conjectures About Prime Decompositions

Conjecture 25 (Square-freeness of Fermat numbers). Every Fermat number F, = 22" + 1 is

square-free [BW1967].

Conjecture 26 (Square-freeness of Mersenne numbers with prime exponents). Every Mersenne
number M, with prime exponent p is square-free [Rot1965; BW1967].

In Exercise 13.21 we showed that for any two distinct primes p and ¢, any common prime

divisor r of the numbers

pi-1 g’ -1
and
p—1 q-1

satisfiesr = 1 (mod 2pgq).
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Conjecture 27 (The Feit-Thompson Conjecture). There are no two distinct primes p and q such

that 4_1 »_1
P divides -
p-1 q-1
Conjecture 28 (Grimm’s Conjecture). If the numbersn+ 1,...,n + k are all composite, then there

is a set of k distinct primes p; such that p; | n +1i for each 1 <i < k.

A Sierpiniski number is an odd number k such that every number of the form k - 2" + 1 is
composite.

Conjecture 29 (Sierpiniski’s problem). The smallest Sierpiriski number is 78,557.
A Riesel number is an odd number & such that every number of the form & - 2" — 1 is composite.

Conjecture 30 (Riesel’s problem). The smallest Riesel number is 509, 203.

20.6 Conjectures About Arithmetic Functions

Conjecture 31 (The nonexistence of odd perfect numbers). There are no odd perfect numbers.

Conjecture 32 (Infinitude of Amicable Numbers). There are infinitely many pairs of amicable
numbers; that is, there are infinitely many pairs of distinct numbers such that the sum of the proper
divisors of either one of them equals the other.

A number n is called solitary if for all m # n we have

o(m) 4 o(n)
m n

cm) _ o)

In other words, n is solitary if n is the only number m such that == -—. For example, we have

o(10) 1+2+5+10 9

10 10 5
Conjecture 33 (The Solitary Number Conjecture). The number 10 is solitary.

Conjecture 34 (Carmichael’s Conjecture). If k = ¢(n) for at least one n, then k = ¢(n) for at least
two distinct input values of n.

20.7 Conjectures About Diophantine Problems
Conjecture 35 (The Erd6s—Moser Conjecture). The only solution to the equation
1 425+ mb = (m+ DF

is1+2=3.
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Conjecture 36 (Brocard’s Problem). The only integer solutions to the equation

n+1=m?

ared'+1=5%5'+1=11%and 7' + 1 = 712

Problem 37 (Existence of Perfect Euler Bricks). An Euler brick is a rectangular cuboid whose
edges and face diagonals all have integer lengths. Does there exist a perfect Euler brick; that is, an
Euler brick whose space diagonal is also an integer?

Conjecture 38 (The Fermat—Catalan Conjecture). There are only finitely many solutions in the
positive integers to the equation
X+ yb — Zc
PSP N
satisfying + + 7 + - < L.

Conjecture 39 (Beal’s Conjecture). If a, b, c,x,y,z > 2 are integers satisfying the equation

then ged(x,y,z) > 1.

Conjecture 40 (Goormaghtigh Conjecture). The only solution in integers x >y > 1 withm,n > 2

satisfying
x"=1 y'-1
x—-1  y-1
are
55-1 2-1 90° -1 28 -1

and

5-1 2-1 90-1 2-1°
That is, the only two integers that are repunits of length > 3 in two different bases are

31=(111)s = (11111),  and 8191 = (111)gg = (1111111111111)5.

Conjecture 41 (The abc-Conjecture). Let a, b, and c be relatively prime positive integers such
that a + b = c. Let rad(n) denote the radical of n, the product of the distinct prime factors of n. For
every € > 0, there exist only finitely many triples (a, b, c) such that

¢ > rad(abc)'*e.
Conjecture 42 (Hall’s Conjecture). For any € > 0, there exists a constant C such that for any two
positive integers x and y such that x> # y?, we have

Iy = x3| > ng%_g.
Conjecture 43 (The Casas—Alvero Conjecture). Let f(x) be a polynomial of degree n with integer
coefficients. If for each O < k < n there is an integer ri such that both f(ri) = 0 and £ (r) = 0,

then f(x) must be of the form c(x —r)".
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20.8 Conjectures About Representations of Numbers

Problem 44 (The congruent number problem). Find a complete characterization of all rational
numbers that appear as the area of a right triangle with rational sides.

Conjecture 45 (Goldbach’s Conjecture). Every even number greater than 2 can be written as the
sum of two primes.

Conjecture 46 (Lemoine’s Conjecture). Every odd integer greater than 5 can be written in the
form p + 2q, where p and q are primes.

Conjecture 47 (The Erd&s—Straus Conjecture). Every rational number of the form 4/n can be
written as the sum of three unit fractions: There are integers a, b, and c such that

4_1+1+1
n a b ¢

Conjecture 48 (Pollock’s Conjecture). Every natural number is the sum of five tetrahedral numbers.

Conjecture 49 (The Sums of Three Cubes Conjecture). Every natural number n # +4 (mod 9)
can be written as a sum of three cubes.

For the following conjecture, observe that every integer a > 1 occurs only a finite number of
times in Pascal’s triangle. That is, the integer a can be represented in only finitely many ways as a
binomial coeflicient a = (2) This follows immediately from the observation that any occurrences
of the integer a in Pascal’s triangle are within the first a + 1 rows. However, David Singmaster
observed that the number of times any integer occurs in Pascal’s triangle seems to be bounded
[Sin1971]. Indeed, currently there are no known numbers that occur more than eight times in
Pascal’s triangle, and the number 3003 is the only known number that occurs eight times.

Conjecture 50 (Singmaster’s Conjecture). There exists a finite number N such that every integer
a > 1 occurs at most N times in Pascal’s triangle.

Conjecture 51 (Rudin’s Conjecture). The maximum number of squares that can occur in an
arithmetic progression of length n is asymptotically given by O (+/n). Furthermore, it is conjectured
that the maximum is always attained in the arithmetic progression 24k + 1 for0 < k < n -1
[Rud1960].

20.9 Conjectures About Iterative and Dynamical Processes

Conjecture 52 (Collatz’s Conjecture). Let f be the map that sends n to n/2 if n is even and sends n
to3n + 1 ifnis odd. Starting from any number, one can reach the number 1 by iteratively applying

I
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The Euclid—Mullin sequence p,, is defined by setting po := 2 and letting p,+1 be the least prime

factor of i
1+ l—[ Pk
k=0

Conjecture 53 (The Mullin—Shanks Conjecture). Every prime occurs in the Euclid—Mullin se-
quence.

Conjecture 54 (Gilbreath’s Conjecture). Let (go(n))nen be the sequence of primes starting with
20(0) := 2, go(1) := 3, and so on. Define

gn+1(k) :=|gn(k + 1) — g, (k)|

so that the sequence g,+1 consists of the absolute differences between consecutive entries in the
sequence g,. Then g,(0) =1 for every n > Q.

Conjecture 55 (The Lonely Runner Conjecture). Suppose there are n runners who run with distinct
constant speeds on a circular track of length 1. Each runner will, at some time, be at distance 1/n
from all the others.

Conjecture 56 (The Catalan-Dickson Conjecture). Define the aliquot sequence of a number n by
so(n) :=nand sy+1(n) = o (sg(n)) — sx(n). That is, sx+1(n) is the sum of the proper divisors of
sx(n). For every n, the sequence (si(n))ren is eventually periodic.

Conjecture 57 (The 196 Problem (Lychrel Numbers)). For any integer n written in base 10, let n’
be the number written in base 10 obtained by reversing the digits of n. Define the sequence (a,) by
ap := 196, and an1 = a, + a,. Then none of the numbers in the sequence (a,) is palindromic.
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