Johns Hopkins University

MaAatH 304
Egbert Rijke
\\\\\\ o
/ \
| q)
| T
\ R
~— o

Elementary Number Theory

Spring 2025






Cover image: Vieta jumps between the rational points on the unit circle eventually reach
one of the points (1,0), (0, 1), (=1,0), or (0, -1).






Contents

Contents

Course Information

Introduction

1

Mathematical Induction
1.1 Reasoning About Infinitely Many Natural Numbers . . . .. ... ..
EXercises . . . . . . .. e e

Counting

2.1 Counting Bijections . . . . . . . .. .. ...
2.2 Counting Subsets . . . . . . . . ...
2.3 The Binomial Theorem . . . . . .. ... ... ... .........
2.4 The Inclusion-Exclusion Principle . . . . ... ... ... ... ...
Exercises . . . . . .. e e

Euclidean Division and Representability

3.1 The Well-Ordering Principle of the Natural Numbers . . . .. .. ..
3.2 Euclidean Division . . . . ... ... ... .
3.3 The Representability Theorem . . . .. ... ... ... .. .....
3.4 Combinatorial Applications . . . . . . . . ... ... ... . ...,
EXercises . . . . . . o i e e

Linear Diophantine Equations

4.1 Divisibility . . . . .. e
42 IdealsoflIntegers . . . . . . . .. . .. i
4.3 The Ordering by Divisibility . . . ... ... ... .. ........
4.4 Greatest Common Divisors . . . . . . . ... ...
4.5 Euclid’s Algorithm . . . . . ... ... L
4.6 Linear Diophantine Equations in Multiple Variables . . . . . . .. ..
EXercises . . . . . ...

vii

o=

—_— 00 3 3

13

15
15
16
18
20
21



10

11

The Fundamental Theorem of Arithmetic

5.1 PrimeNumbers . . . .. ... ... ...
5.2 The Infinitude of Primes . . . . . . ... ... ... ... . ....
5.3 The Fundamental Theorem of Arithmetic . . . .. ... ... ....
5.4 Legendre’s Formula and Kummer’s Theorem . . ... ... .....
5.5 Bertrand’sPostulate . . . . .. ... oL
EXercises . . . . . . ..
Polynomials

6.1 Polynomials with Integer Coefficients . . . . . ... ... .. ....
6.2 Lagrange’s Interpolation Theorem . . . ... . ... ... .. ....
6.3 Fixed Divisors of Integer Polynomials . . . . . ... ... ......
Exercises . . . . . ...
Pythagorean Triples

7.1 The Pythagorean Theorem . . . .. ... ... ... .........
7.2 Euclid’s Parametrization of the Pythagorean Triples . . . . . . . . ..
7.3 Rational Points on the Unit Circle . . . ... ... ... ... ....
7.4 The Tree of Primitive Pythagorean Triples . . . . . . . ... ... ..
EXercises . . . . . . ..
Infinite Descent

8.1 The Method of Infinite Descent . . . . . . ... ... .........
8.2 The Unsolvability of x* +y* =z*. . . .. ... ... .. ... ...
83 VietaJumping . . . . . . ... e
Exercises . . . . . ... e
Congruences

9.1 The Congruence Relations . . . .. ... ... ... .........
9.2 EquivalenceRelations . . . . . . ... ... ... ... ...
9.3 Equivalence Classes and Residue Systems . . . . . . ... ... ...
9.4 Reduced Residue Systems . . . . ... ... ... ...
EXercises . . . . . . ..

Modular Arithmetic

10.1 The Integers Modulon . . . . . ... ... .. ... ... .. ....
10.2 Solving Linear Congruences . . . . . . . . . . .. ... ...
10.3 Fermat’s Little Theorem . . . ... .. .. ... ... ........
104 Euler’'sTheorem . . . . . . . . . . . .. .. ...,
10.5 Wilson’s Theorem . . . . . . . . . . ... ... .. ... .. .....
Exercises . . . . . . ..

Systems of Linear Congruences

11.1 Solving Multiple Linear Congruences Simultaneously . . . . . . . ..
11.2 The Chinese Remainder Theorem . . . . ... ... ... ......
11.3 Linear Congruences in Multiple Variables . . . . . . ... ... ...
11.4 Multiplicativity of Euler’s Totient Function . . . . ... ... .. ..

ii

37
37
40
4
44
48
49

51
51
53
56
58

59
59
62
66
66
67

69
69
71
72
73

75
75
77
80
82
82

85
85
87
89
90
91
92



EXercises . . . . . . . e e

12 Polynomial Congruences
12.1 Polynomial Congruences of Prime Moduli . . . . .. ... ... ...
12.2 Polynomial Congruences of Composite Moduli . . . . ... .. ...
12.3 Reduced Polynomials ModuloaPrime . . . . ... ... .......
12.4 The Elementary Symmetric Polynomials . . . . . . ... ... ....
Exercises . . . . . . ...

13 Primitive Roots
13.1 The Multiplicative Order of an Integer Modulon . . . . .. ... ..
13.2 The Infinitude of Primes Congruent to 1 Modulo Powers of 2 . . . . .
13.3 Counting Elements of a Given Order Modulo a Prime . . . . . . . ..
134 Primitive Roots . . . . . . .. ...
EXercises . . . . . . ..

14 Quadratic Residues
14.1 Quadratic Congruences . . . . . . . . . v v v v it
14.2 QuadraticResidues . . . . . .. ... ... ... ... .. ... ...
14.3 Legendre Symbols . . . . . ... ... ... ...
14.4 Euler’s Criterion . . . . . . . . .. . vt
14.5 Euler’s Prime-Generating Polynomial . . . . .. .. ... ... ...
EXercises . . . . . . o i e

15 Quadratic Reciprocity
15.1 The Quadratic Characterof 2 . . . . . . . .. .. ... ... .....
15.2 The Statement of Quadratic Reciprocity . . . . ... ... ... ...
153 Gauss'sLemma . . . . . . ... .. e
15.4 Eisenstein’s Proof . . . . . . .. . ... ... .. L ..
Exercises . . . . . . ..

16 Arithmetic Functions
16.1 Multiplicative Functions . . . . . . ... ... ... .........
16.2 Dirichlet Convolution . . . . . . . . . . . ... .. ... .. .....
16.3 The Mobius Inversion Formula . . . . .. .. .. ... ... .....
16.4 Dirichlet Inverses . . . . . . . . . . . . . .. e
EXercises . . . . . . . .

17 The Distribution of the Prime Numbers
17.1 The Bachmann-Landau Notation for Asymptotic Growth . . . . . ..
17.2 An Elementary Estimate of the Prime Counting Function . . . . . ..
17.3 Chebyshev’s Theorem . . . . . . . . .. ... ... ... ... ....

Bibliography

iii

105
105
108
109
111
114

115
115
117
118
120
121
123

125
125
128
131
132
135

137
137
139
140
142
143

145
145
146
149

151



v



Course Information

Course Materials

We will use these course notes and Number Theory by Andrews [And94].

Important Dates

* First lecture: January 21st.

e First midterm: February 25th.
* Spring break: March 17-24th.
* Second midterm: April 1st.

e Final lecture: April 24th

¢ Final exam: May 8th.

The first midterm covers content up to February 13th. The second midterm covers
content up to the spring break.

1. Midterm 1 covers Chapters 1 to 5 from these notes, and Chapters 1, 2, and 3 from
Andrews Number Theory. Note that parts of Chapter 3 of Andrews’ book do not
have an equivalent in these notes, so don’t forget to study Chapter 3 of Andrews.

2. Midterm 2 covers Chapters 6 and 9 to 13 from these notes, and Chapters 4, 5, 6.1,
and 7 from Andrews Number Theory.



Grading
The course grade will be determined as follows:

¢ Homework: 60%

¢ Each exam (two midterms and final): 20% each

This adds up to a total of 120%, allowing students the opportunity to earn extra
credit. The grading scale is as follows:

* > 100%: A+

90-100%: A

80-90%: B

70-80%: C

60-70%: D
* <60%: F

If the median score for the class falls below a B, grades may be adjusted (curved) so
that the median corresponds to a B. Any adjustments will be made consistently for all
students.
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Introduction

Number theory is the study of numbers, particularly the natural numbers (the num-
bers 0, 1,2, ... increasing indefinitely in increments of 1), the integers (the numbers
...,—2,—-1,0,1,2,...), and occasionally the rational numbers (fractions of integers). Its
central themes include questions about divisibility, prime numbers, modular arithmetic,
arithmetic functions, and finding integer solutions to equations. Additionally, number
theory explores combinatorial questions, such as determining how numbers can be
decomposed into sums or products of specific forms, like squares or primes. More
advanced branches of number theory are occasionally also concerned with the properties
of other number systems, such as the real numbers, complex numbers, or p-adic numbers.
However, in elementary number theory these explorations are primarily motivated by

how these number systems relate back to the integers.

A Short History of Number Theory

Number theory has a long history that dates back to
antiquity. One of the earliest and most influential sys-
tematic treatments of mathematics is Euclid’s Elements
[Euc08], written around 300 BC in Alexandria. In this
work, Euclid established several key results in number
theory, including the infinitude of primes and the algo-
rithm for finding the greatest common divisor, which
bears his name.

Around 250 AD, the Greek mathematician Dio-
phantus of Alexandria wrote his Arithmetica [Diol10],
which focused on solving what are now known as
Diophantine equations. This 13-volume work is often
considered the first comprehensive treatment of algebra,
though Diophantus relied on rhetorical descriptions
rather than modern algebraic notation. Only six of the
original volumes have survived, but they profoundly
influenced later mathematicians.

The works of Euclid and Diophantus were preserved
and studied by scholars in the Byzantine Empire, such
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as Theon of Alexandria and his daughter Hypatia. They added commentaries that
clarified and expanded upon the original text.

During the Islamic Golden Age, scholars like Al-Khwarizmi, Ibn al-Haytham, and
Omar Khayyam preserved and expanded upon the works of Euclid and Diophantus.
Al-Khwarizmi’s work, especially his Kitab al-Mukhtasar fi Hisab al-Jabr wal-Mugabala
(from which the term "algebra" originates), introduced systematic methods for solving
linear and quadratic equations. He used rhetorical algebra, like Diophantus, but began
a transition toward symbolic representation by relying on consistent terminology for
operations and equations.

After the invention of the printing press, Erhard Ratdolt, a German printer based
in Venice, produced the first printed edition of the Elements in 1482. This edition
included mathematical diagrams and marked an important step in the dissemination of
Euclid’s work. The first printed edition of Diophantus’ Arithmetica was published in
1575 by Wilhelm Xylander, a German mathematician. The printing was done in Basel,
Switzerland, a major hub for academic publishing at the time. By the time of Pierre de
Fermat in the 17th century, both the Elements and Arithmetica had become essential
texts for mathematicians across Europe, influencing the development of number theory
and inspiring Fermat’s groundbreaking contributions.

Pierre de Fermat (1607-1665) is often consid-
ered the founder of modern number theory. He
was a contemporary of Blaise Pascal and Marin
Mersenne, both of whom he corresponded with,
and also of Galileo Galilei. He wrote a manuscript
titled Eléments de Géométrie, which served as an
extension and commentary on Euclid’s Elements.
In this work, he sought to modernize Euclid’s
geometry by applying the emerging methods of al-
gebra and analytic geometry to classical geometric
problems.

Fermat made several groundbreaking contri-
butions to number theory. He proved Fermat’s
Little Theorem, which is a central theorem of this
course, and he formulated the sum of two squares
theorem asserting that an odd prime p can be ex-
pressed as the sum of two squares if and only if
p =1 (mod 4). He also introduced the method
of infinite descent, and formulated the Polygonal
Number Theorem, which states that every positive
integer can be expressed as the sum of at most n
n-gonal numbers.

Fermat also made several famous conjectures. He conjectured that the equation
x%2 + Ny? = 1 has infinitely many solutions for any non-square integer N. Euler made a
significant advance to this problem by proving it for specific values of N. The general
form of the solution to equations of the form x> + Ny? = 1 was found later by Legendre
and Lagrange.

Finally, Fermat famously asserted that there could be no three nonzero integers x, y,

Figure 2: Pierre de Fermat. Engraving
in Oeuvres Mathématiques Diverses.
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and z such that the equation
n

Myt =z
holds, when n > 3. This statement is now known as Fermat’s Last Theorem. He claimed
to have a "truly marvelous proof™, but that the margin of his copy of Arithmetica was
too small to contain it. His assertion, known as Fermat’s Last Theorem, captivated
mathematicians for centuries. It was finally proven in 1995 by Andrew Wiles, about 350
years after Fermat made his famous note in the margin, using advanced techniques from
algebraic geometry and modular forms. Wiles’s achievement is considered one of the
most remarkable milestones in the history of mathematics.

While Fermat laid the groundwork for modern number theory, we should mention
that the concept of function hasn’t been crystallized until Leibniz coined the term in
1673, using it to describe quantities related to curves, such as slopes, tangents, and
areas. Bernoulli played a significant role in expanding the idea of functions. He used
the term explicitly in 1718, describing it as a quantity dependent on another variable.
Euler provided the first modern definition of a function in his Introductio in Analysin
Infinitorum (1748) [Eul88]. He emphasized that functions could include both algebraic
(e.g., polynomials) and transcendental forms (e.g., trigonometric and exponential
functions). Peter Gustav Lejeune Dirichlet was the first to define functions abstractly
as a correspondence between two sets, removing the requirement for expressions or
formulas. This abstraction was a key insight for the theorem that we now know as
Dirichlet’s theorem: Every arithmetic progression

a, a+b, a+2b, a+3b, ...

in which a and b are coprime, contains an infinitude
of primes. Dirichlet proved his theorem in 1837,
more than 150 years after Leibniz first coined the
term of function.

Euler’s Introductio in Analysin Infinitorum
marked the beginning of analytical number theory.
As we mentioned before, Euler defined functions
here and established the notation f(x) of a func-
tion applied to its variable, which we still use
today. He derived the famous formula for complex
exponentials

e™ = cos(x) + i sin(x).

This identity connects the exponential function,
trigonometric functions, and the imaginary unit.
The Riemann zeta function (s) makes its first
appearance here in a complex variable s, and he
derived the celebrated product formula

S 1 : . :
— — Figure 3: Leonhard Euler. Engraving
s) = E = | | .
£(s) o ns 1-p~s by Friedrich Weber.

p prime
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More generally, Euler explored infinite series and products. The Basel summation

formula
2

= 1
IE
n=1

was first proven here, which was one of Euler’s most celebrated achievements. Euler
was keen to explore the connection between geometry and analysis, and in Introductio
in Analysin Infinitorum, he advanced the idea that the study of functions and infinite
series could provide new insights into geometric problems. He showed how techniques
from analysis could be used to solve problems in geometry and vice versa, fostering the
development of applied mathematics.

Building on the work of Euler, Gauss began
using the properties of the zeta function and other
analytic methods to investigate the distribution of
the primes. His seminal work Disquisitiones Arith-
meticae [Gau86] is often considered the starting
point of the study of the distribution of primes, ul-
timately leading up to the Prime Number Theorem.
Gauss conjectured that the number 7(n) of primes
below a number 7 satisfies the asymptotic law

n

log(n)”

n(n) ~

This conjecture was proved independently by
Jacques Hadamard and Charles Jean de la Val-
1ée Poussin. Furthermore, Gauss laid the foun-
dation for modular arithmetic, and proved the
celebrated law of quadratic reciprocity, which
tells us when a quadratic equation modulo a
prime number is solvable. More precisely, it
states that if ¢ = 1 (mod 4) then the congru-
ence x> = p (mod ) is solvable if and only if the
congruence x> = g (mod p) is solvable.

So far, we have covered some of the most celebrated advances in humanity’s
understanding of numbers up to the early 19th century. Mathematics has made rapid
progress since then. Bertrand’s postulate, which asserts that there is always at least one
prime p between n and 2n, for any n > 1, was proven by Pafnuty Chebyshev in 1852,
and Ben Green and Terence Tau proved in 2004 that the sequence of prime numbers
contains arbitrarily long arithmetic progressions.

The 20th century saw the emergence of the Langlands program, a far-reaching
research program that aims to connect number theory, representation theory, and
algebraic geometry. With the contributions of mathematicians like André Weil, Robert
Langlands, and many others, the program has shaped much of the direction of modern
research in number theory and its applications to other branches of mathematics.

Even today fundamental concepts such as sets and functions continue to evolve.
We live in an era of digital computation, with tools far beyond the reach of Fermat,

Figure 4: Carl Friedrich Gauss. Paint-
ing by Christian Albrecht Jensen.



Euler, and Gauss, where essentially all recorded knowledge is readily available to almost
anyone. This computational revolution has also given rise to powerful tools like proof
assistants—computer programs designed to construct and formally verify mathematical
proofs. Since proof assistants are programming languages, they are often based on type
theory rather than set theory, slightly changing the way mathematics is done. Functions
in type theory are even more general than Leibniz, Euler, and Dirichlet envisioned: unlike
in set theory where functions are a specific kind of relations between sets, functions in
type theory are primitive entities satisfying certain rules for evaluation, and they have an
extra dependency built in, allowing types of their outputs to depend on the input. Proof
assistants are being used with great success to formally verify advanced mathematical
theorems. Georges Gonthier formally verified the Four Color Theorem and the Odd
Order Theorem, and Tom Hales verified Kepler’s conjecture about sphere packings. A
current effort led by Kevin Buzzard aims to formally verify Fermat’s Last Theorem.
Today, number theory continues to be one of the most active and fruitful areas of
mathematical research, all of which started simply with counting on ten fingers.

Overview of the Course

An integer a is said to divide an integer b if there exists an integer x such that ax = b. In
other words, the number a divides b if the equation

ax=>b

has a solution in the integers. In this case we say that a is a divisor of b, and we write
a | b. This equation is the simplest example of a Diophantine equation. Diophantine
equations are equations expressed using variables, integers, and arithmetic operations.
The primary goal of solving a Diophantine equation is to find integers for each of
the variables for which the equation is true. The study of Diophantine equations is a
cornerstone of number theory.

For example, the equation

x>-1=0

is a quadratic Diophantine equation with two solutions: x = 1. One of the most
well-known quadratic Diophantine equations is the equation

2y =2
which is a Diophantine equation in three variables. Its solutions are known as
Pythagorean triples. These triples, such as (3,4,5) and (5,12, 13), corresponds
to the side lengths of right-angled triangles and have been studied since antiquity.
Perhaps the most famous Diophantine equation is Fermat’s equation

xn +yn :Zn,

which has no solutions for nonzero integers x, y, and z when n > 3.
In this course, however, we will not go as far as proving Fermat’s last theorem. The
first target of this course is the Fundamental Theorem of Arithmetic, which establishes
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the prime numbers as the building blocks of all natural numbers. A number 7 is said to
be prime if it has exactly one divisor d | n such that d # n. If this is the case, then its
unique divisor that is not equal to itself is the number 1. The Fundamental Theorem
of Arithmetic asserts that any nonzero natural number n can be written as a product of
primes

n=pip2--- Pk

and that this decomposition of 7 as a product of primes is unique up to the ordering of
the primes.

In order to study divisibility properties more deeply, Gauss introduced in his
Disquisitiones Arithmeticae the congruence relations of modular arithmetic. Following
Gauss, we say that a number a is congruent to b modulo 7, that is,

a=b (mod n)

if n | b — a. Gauss used this new formalism to study quadratic residues, the Chinese
Remainder theorem, and a variety of other problems in number theory, a thread we will
also pick up on in this course.

Some of the most important theorems in this context are Fermat’s Little Theorem,
Euler’s Theorem, and Wilson’s Theorem. Fermat’s theorem asserts that given any prime
number p and any number «a that is not divisible by p we have

a’'=1 (mod p).

Fermat’s theorem is an important ingredient in primality tests: If the congruence
a" ' =1 (mod n) is false then the number n cannot be prime. Testing this congruence
for several values of a is a simple way of discovering that n is composite. This test
is by itself, however, not conclusive because there are some numbers, the Carmichael
numbers, that satisfy Fermat’s congruence for all a relatively prime to n.

Euler’s theorem is a sharper version of Fermat’s Little Theorem, but it involves a new
function: Euler’s totient function. Euler’s totient function ¢ counts the numbers less
than # that are relatively prime to n, which means that they share no common divisors
with n other than 1. For example, if p is a prime number then ¢(p) = p — 1 since every
number 0 < n < p is relatively prime to p. Using the totient function, Euler’s theorem
asserts that the congruence relation

a®™ =1 (mod n)

holds for any natural number # and any number a relatively prime to n. Euler’s theorem
has applications in cryptography.
Wilson’s Theorem states that a number p is a prime number if and only if the
congruence
(p-1D!'=-1 (mod p)

holds. Here, the exclamation mark is used for the factorial function: The number n! is
the product 1 - - - n of all the numbers from 1 through n. Wilson’s Theorem therefore
gives another criterion for primality testing.

Euler’s totient function is an example of an arithmetic function. Other such functions
include the function 7(n), which returns the number of divisors of a number 7, the
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function o (n), which returns the sum of the divisors of a number n, and the Mobius
Sfunction u. These and other functions have important relations between them, that we
will investigate next. The Mobius inversion formula, for instance, states that if f and g
are two arithmetic functions, then we have

f(n) = Zg(d) if and only if gn) = Zu(d)f (g) .

dln dn

This result allows us to "invert" summation relations involving divisors.

The M&bius inversion is only one aspect of an algebraic structure that is present
on the set of all arithmetic functions. Arithmetic functions can be multiplied by an
operation known as Dirichlet convolution, which gives the set of arithmetic functions the
structure of a commutative ring. Commutative rings are sets with operations of addition
and multiplication satisfying the usual laws of arithmetic, and having such a structure
on a set gives us a great opportunity to study them further. In our case, we get to study
the primes more closely.

Experimentation is essential in number theory. By making lists of primes, lists of
numbers that can be written as the sum of two squares, lists of square-free numbers,
and so on, you will start to gather data on numbers and perhaps start seeing patterns
that might otherwise feel elusive. At the end of this section, we have produced two
number grids with the numbers from 1 to 1728. The great masters all have endlessly
created such lists to organize and discover patterns in various kinds of numbers. Feel
free to print it as many times as you like, and color them according to your own rules, or
whenever something in the course piques your interest. Some exercises throughout the
course will ask you to color this number grid in a certain way.

Literature

In this course we will be following [And94] fairly closely. One distinctive feature of this
book is that it presents many of the most important theorems from two perspectives: a
combinatorial one and an abstract one. This dual approach helps to clarify not only why
these results are true but also appreciate why they are natural and inevitable within the
broader framework of mathematics.

However, there are many excellent sources to learn number theory from. One of my
personal favorites for its clarity and accessibility is LeVeque’s Topics in Number Theory
[LeV56a; LeV56b]. Both Andrews’ and LeVeque’s textbooks contain plenty of exercises,
most of which are very fun.

Silverman’s Friendly Introduction to Number Theory [Sil12] is another wonderful
textbook, explaining the ideas behind many theorems and methods in number theory in
a very accessible way, with practical examples and exercises. If you find some parts of
Andrews or these notes hard to follow, you may well find the Friendly Introduction very
helpful.

The undisputed classic textbook on number theory is Hardy and Wright’s Introduction
to the Theory of Numbers [Har+08]. This book covers all the essential topics in number
theory, including elementary number theory and analytical number theory. It is more
comprehensive and also provides more historical notes. The textbook of Hardy and
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Wright does not provide exercises, but it contains the proofs of many important facts in
number theory that are stated as exercises elsewhere.
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Chapter 1

Mathematical Induction

1.1 Reasoning About Infinitely Many Natural Numbers

Many people are familiar with numbers through everyday experiences like counting,
measuring, or comparing quantities. From a young age, we develop an intuition about
how numbers behave. Our experience with numbers reveals patterns of truths and
properties that seem to always be true. For example, we quickly learn that it does not
matter in which order we add two numbers: Given two numbers a and b it is always
true that a + b = b + a. Truths such as this one seem so self-evident that we might be
tempted to just accept them. However, for a rigorous mathematical theory we need to
be more careful. Mathematicians require proofs—conclusive arguments that establish
why certain properties hold universally for all numbers, or at least for precisely defined
sets of numbers. Checking a property for every number up to a hundred, a million, or
even 10?7 might confirm a pattern, but infinitely many numbers remain beyond such
finite checks. To reason about all natural numbers at once, we need formal principles
that extend beyond empirical observation and anecdotal evidence. In order to discover
such reasoning principles, we need to find out what the natural numbers really are.

When we say that the natural numbers are the numbers 0, 1, 2, . . ., we really mean
that the natural numbers are generated from O and the successor function n — n + 1.
The collection of all natural numbers forms a set or type

N:={0,1,2,...}. (1.1)

Mathematicians often prefer to work with sets, while computer scientists might
prefer to work with types, both of which are collections of abstract objects often referred
to as elements. The distinction is merely that of the logical framework being used: Most
mathematicians rely on the Zermelo—Fraenkel set theory, while computer scientist rely
on programming languages that often have a type theory in its foundation. Theorem
proving in computer programs called proof assistants is rapidly becoming a more
essential mathematical activity for students and researchers alike. However, many of
the most popular proof assistants are based on type theory, in which collections of
mathematical objects are called types.



The natural number zero and the successor function together are sufficient to describe
all the natural numbers. The mathematician’s way to express this sufficiency is by
stating the principle of mathematical induction: Given any property P(n) expressing a
condition of an arbitrary natural number #, in order to prove that P(n) is true for all n it
suffices to prove that:

1. The property P(0) is true.
2. For all n, if the property P(n) holds then the property P(n + 1) holds.

Mathematical induction works, because every natural number is either O or it is the
successor of a previous natural number. Proving a property for all natural numbers
therefore breaks down in two cases: The base case in which we prove that P(0) is true,
and the inductive step where we prove that P(n + 1) is true provided that P(n) is true.

Proofs by induction can be broken down into the following steps: First identify the
property P(n) that you want to prove by induction. The goal of an induction proof is to
prove that P(n) is true for all n. Then prove the base case. While this step is often trivial,
it is a necessary and essential part of an induction proof. Finally, for the inductive step,
write down the exact induction hypothesis, namely the property P(n), and the exact goal
of the inductive step, namely the property P(n + 1). Then use the induction hypothesis
to prove that P(n + 1) then also holds. After these steps the proof that P(n) holds is
complete.

Theorem 1.1.1. For any natural number n we have

n(n+1)

O+ ---+n=
" 2

Proof. Let S, :=0+---+ n, and let P(n) be the property that S, = w We will
prove that P(n) is true for all n by induction. In the base case, we have to show that
P(0) holds, that is, that the identity

0-1
0= —
2

is true. This is indeed true, because the numerator in the fraction on the right-hand side
is 0.

For the induction step, let n be a natural number and assume as our inductive
hypothesis that P(n) is true. Our goal is now to prove P(n + 1), that is, that the identity

Note that S,,4+1 = S, + (n + 1). By the inductive hypothesis we have that S,, =
which we may now use to rewrite

s

n(n+l)
2

n(n+1)

Sy,+(n+1)= >

+(n+1).



Observe that (n + 1) = 2("2—+1) Therefore we can make the following computation:

nn+1) +(n+1):n(n2+ 1) +2(n2+1) =n(n+1);-2(n+l) _ (n+2)2(n+1).

(n+1 ) (n+2)

Since (n+2)(n+1) = (n+ 1)(n + 2) it follows that S,,,1 = as desired. O

We illustrate induction with another example, the formula for the geometric series.

Theorem 1.1.2. For any real number x not equal to 1, the identity

n—1 B} -1
Zx x—1

=0

Proof. The proof is by induction on n. In the case n = 0 the sum

is an empty sum, because it sums over all elements 0 < k < —1 of which there are none.
In empty sums, nothing is being added, so they are always 0. On the right hand side, we
also see that

0_1 1-1
X - =0,

x—1 x—1

and hence the base case holds.

For the inductive step, assume that Y7 _ *=0 Lk =

= 11 . Our goal is to show that

n n+l
-1
IR
k=0 r-
Note that 37, xk = (3 k=0 ! x¥) + x™. By applying the induction hypothesis we therefore
find that
& X" -1
Z xk = I +x".
k=0 -
Note that x" m Therefore we can bring the two summands under one fraction
as follows:
x" -1 o X'=1  (x—=1x" X — 1 xl_yn oyl
X = = =
x—1 x—1 x—1 x—1 x—1
This completes the inductive step, and therefore the proof. O
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Exercises

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

The factorial function n — n! is defined recursively by
0!:=1
(n+D!:=nl(n+1).
Prove that 2" < n! for all n > 4.

Prove that that the sum of the first » odd numbers is a perfect square. That is,
prove that

2k +1=n2
k=0

Note: It is usual in mathematics that an empty sum Z,:io ay is taken to be 0,
because no numbers are added.

Prove that
S +1)(n+2
Z k(k +1) = w
k=0
Prove the formula for the square pyramidal numbers

Z": 2o+ HCn+ 1)
k=0 6

Can you explain why the numbers of the form 33} _ k? are called square pyramidal
numbers?

Prove that .
nz_:(zk +1)2 = n(én? ~ 1)
k=0 3
Prove Nicomachus’s Theorem

i 13— n*(n+ 1)>

k=0 4
Prove that ]
Z(Zk +1)3 =n202n? - 1).
k=0
Prove that N
Zk(k"‘ Dk +2) = nn+1)(n+2)(n+3)
k=0 4
Prove the formula for the difference of nth powers

n-1
X" - yn — (X _ y) Zxkyn—l—k-
k=0

Note that this formula generalizes the formula for the difference of squares

=y = (x-y)(x+y).
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1.10

1.12

1.13

1.14

1.15

1.16

1.17

1.18

Prove that

Prove that .,
1 1
102
k=2 n
Prove that
z 1 n+1
l_l - K2 - 2n
k=1
Define the nth Fermat number to be
®, :=2"" +1.
Prove that
n—1
®, -2 = ]_[ ;.
k=0

Hint: Use the formula for the difference of squares.

Consider the Fibonacci numbers F'(n) given by
F() =0
F1 =1
Fryp = Fuy1 + F.
Prove that .
D Fi=Fua— 1.
k=0
Prove that
n-1
Fops1 = Fop.
k=0
Prove that ;
Fop = Fopy1 — 1.
k=0
Prove Cassini’s identity
F,%_,.l —FpFpe = (_1)n‘

Consider two nonzero natural numbers a and b satisfying a(a + b) < b>. Prove
that the strict inequality
b n
F, < (—)
a

holds for all n. Use Cassini’s identity to give some examples of natural numbers
a and b that satisfy this inequality.






Chapter 2

Counting

Combinatorics, or discrete mathematics, is mathematics of finite structures. A central
theme in combinatorics is counting, establishing a closed form for the number of objects
of a certain kind. Sometimes, counting methods can be used to obtain results in number
theory. In this lecture we will use a combinatorial argument to show that the product

nn+1)---(n+k-1)

of any k consecutive natural numbers is always divisible by k!. We will also establish
the binomial theorem, which has a myriad of applications throughout mathematics.

2.1 Counting Bijections

Definition 2.1.1. A function f : A — B is said to be a bijection if for every y € B, the
preimage of b

') i={x e Al f(x) =y}

has exactly one element. We write A = B for the set of bijections from A to B.

A function f : A — B is a bijection precisely when it is invertible in the sense
that there is a function g : B — A such that f o g = idp and g o f = id4. Here, the
composite g o f of g and f is the function x — g(f(x)) defined by applying g to the
value f(x) of f at the input variable x.

In the following proposition we prove the number of bijections [n] = [r] on the
standard n-element set

[n] :={0,...,n—1}.

is the number n!. In other words, the factorial function counts the number of bijections
on the standard n-element set.

Proposition 2.1.2. The number of bijections [n] = [n] from the standard n-element set
to itself is exactly n!.



Proof. The proof is by induction on n. For the base case, let n = 0. Then [#] is an empty

set, and there is exactly one function [n] — [n], the empty function. This function is a

bijection, because assuming an element of an empty set is an inherent contradiction.
Now suppose that the number of bijections [n] = [n] is n!. We claim that for each

y € [n + 1] there are exactly n! bijections f : [n + 1] = [n + 1] such that f(n) = y.
To see this, we first define the transposition function sy, ,, defined by

n ifx=y
Syan(x) =1y ifx=n
x otherwise.

In other words, the function sy ,, swaps the elements n and y, and leaves the other
elements fixed. This function is a bijection, because we can verify that the preimage
s;ln (z) is a singleton set for every z € [n + 1]. The preimage s;ln (n) is the singleton
set {y}; the preimage s;ln (y) is the singleton set {n}, and the preimage s;ln (x) is the
singleton set {x} otherwise.

Now we observe that the function

([n+1]=[n+l1]) > (n+1] =[n+1)])

given by g — s o g is itself a bijection, because it is an invertible function. Indeed, it is
its own inverse, because s o s o g = g for any bijection g.

Thus, if f : [n+ 1] = [n + 1] is a bijection such that f(n) = y, then s o f is a
bijection satisfying s(f(n)) = n. In other words, every bijection satisfying f(n) =y
corresponds uniquely to a bijection satisfying f(n) = n.

Now we observe that there are exactly n! bijections f : [n + 1] = [n + 1] satisfying
f(n) = n. Indeed, such bijections are uniquely determined by their restriction to the set
[7], and by the induction hypothesis there are n! such bijections. Since there are n + 1
possible choices of a value y, we conclude that there are n!(n + 1) bijections altogether
from [n + 1] to [n + 1]. O

2.2 Counting Subsets

Definition 2.2.1. The binomial coefficients (}}) are defined recursively by

(8) = (kgl) =0
') )=o)

The binomial coefficients can be arranged in Pascal’s triangle, where each entry is
the sum of the two directly above it. At the top of the triangle we find the binomial
coefficient (8) This is Oth row of Pascal’s triangle. In the nth row from the top, we find

the binomial coefficients () for 0 < k < n.

8



Figure 2.1: Pascal’s triangle.

Theorem 2.2.2. Consider an n-element set S, and a natural number k. Then the number
of k-element subsets of S is the binomial coefficient (2)

Proof. Since the binomial coefficients are defined recursively, this theorem is best proven
by induction on both variables.

If S has no elements and k = 0, then there is exactly one subset of S having k
elements, the empty subset. This shows that the number of 0-element subsets of S is (8).

If S has no elements, then there are no (k + 1)-element subsets of S, since any
(k + 1)-element subset has at least one element, but S has no elements. This shows that
the number of (k + 1)-element subsets of S is ( k?_l).

If S has n + 1 elements, then there is exactly one subset of S with no elements, the
empty subset. This shows that the number of O-element subsets of S is (";').

If S has n + 1 elements, then S has at least one element xy. Now there are two
classes of subsets having (k + 1) elements: the subsets containing x and the subsets not
containing xo. A (k + 1)-element subset of S containing x is equivalently described
as a k-element subset of the n-element set S \ {xo}, because its (k + 1)st element
is the element xo. By the induction hypothesis, there are exactly (Z) such subsets.
Furthermore, a (k + 1)-element subset of S not containing xg is equivalently described
as a (k + 1)-element subset of the n-element set S \ {x¢}. By the induction hypothesis,
there are exactly (,;,) such subsets. Combining these two observations, we find that the
number of (k + 1)-element subsets of S is

n N n\ (n+1 .
k+1) " \k) \k+1)
Definition 2.2.3. We define the set Ps(k) of k-permutations of a set S recursively by:

9



1. The set Ps(0) of O-permutations of S is the set {*} with one element.

2. The set Ps(k + 1) of (k + 1)-permutations of § is the set

{(s,0) | s €8S, 1€ Ps\(53(r)}
of pairs (s, ) consisting of an element in S and an k-permutation of the set S\ {s}.

Lemma 2.2.4. The number of k-permutations of an n-element set S is the number , Py
defined by
wPr:=nn-1)---(n—k +1).

Proof. The proof is by induction on k. There is exactly one O-permutation of any
n-element set. To see that the number of (k + 1)-permutations of an n-element set is
n---(n—k),note that such a (k + 1)-permutation consists of a choice of an element of S,
and a k-permutation on the remaining n — 1-element set of elements. Thus, the number
of (k + 1)-permutations on an n-element set is n times the number of k-permutations on
an (n — 1)-element set, i.e., it is

nn—=1)---((n-1)—-k+1)=n(n-1)---(n—k). O

Proposition 2.2.5. There is a bijection between the set of k-permutations of an n-element
set S, and the set

{(A,f)IACS, f:{0,...,k—1} = A}.
of pairs (A, f) consisting of a subset A C S and a bijection {0, ...,k — 1} = A.
Proof. There is exactly one O-permutation of any n-element set S, and likewise the set
of empty subsets A of § equipped with a bijection [0] = A also contains exactly one
element: the empty subset equipped with the empty bijection.

For the inductive step, consider a (k + 1)-permutation (s,?) of S, consisting of
an element s and a k-permutation 7 of the set S \ {s}. By the induction hypothesis,
the k-permutation ¢ corresponds uniquely to a subset A C S\ {s} equipped with a
bijection f : [n] = A. Thus, the (k + 1)-permutation (s, t) corresponds to the subset
B := AU {s} C S, equipped with the bijection g : [n + 1] = B given by g(x) := f(x)
for x < nand g(n) :=s. O

Proposition 2.2.6. The product n(n — 1) --- (n — k + 1) of any k consecutive numbers
is divisible by k!.

Proof. By Proposition 2.2.5 there is a bijection between the set of k-permutations of
the set S := [n], and the set

{(A,f)|ACS, f:{0,...,k—1} = A}.
These two sets therefore have the same number of elements. Thus, it follows that
n
nn—1)---(n—k+1)= (k)-k!,
showing that the left-hand side is divisible by k!. O

10



Corollary 2.2.7. Formula for binomial coefficients. For any two natural numbers n and

k, we have
n\ n!
k] k'(n—-k)!

Proof. By the previous proposition we have (}) - k! = ,Px = n!/k!. m

2.3 The Binomial Theorem
If we expand the exponent (x + y)3, we get

(x+y) = (x+y)*(x+y)
= (4 20y + ) (x +y)
=x+ szy +)cy2 +x2y + 2)cy2 + y3

=x>+ 3x2y + 3xy2 +y%
Going further, if we expand the exponent (x + y)*, we get

x+ =3 +3x% + 30> +yH)(x +y)
=x*+ 3x3y + 3x2y2 +)cy3 + x3y + 3x2y2 + 3xy3 + y4
=x* +4x%y + 6x%y? + 4xy® + y*

Now we might recognize an emerging pattern in the coeflicients of these polynomials:
they are all binomial coefficients! The binomial theorem generalizes this result for all
exponents 7.

The binomial theorem has many proofs, including combinatorial proofs and algebraic

proofs. All these proofs have their own merits. We will present here an algebraic proof,
using induction, since it is the most easily applicable to settings other than the integers.

Theorem 2.3.1. The binomial theorem. In any number system, such as the natural
numbers, the integers, the rational numbers, the reals, the complex numbers', we have

n

n _ nY k n-k

(x+y) —Z(k)xy .
k=0

Proof. We prove the statement by induction on n. In the base case, we find that both

sides of the equation
0
0_ n\ k. 0-k
(x +) —Z(k)x y

k=0

"More generally, the binomial theorem applies to any semiring, conditional on the assumption that
Xy = yx.

11



evaluate to 1, so the equation is true. In the inductive step, we have that

(x+y>"“—(x+y)2( ) kynk
:Z(Z) kel yn= k+Z( ) k n—k+1
. n-1 n n
=xn+1+Z(k) k+1nk+Z()knk+l yn+l

k=1

_ n+l n k. n—k+1 kyn=k+l | n+l
SR A R WH K

n
n+l n )k n—k+1 n+l
= + + +
* k=1 ((k_l) (k))x Y Y

n+l
_Z(n"'l)k(nﬂ)k O

The binomial theorem has a long history. The earliest known references to aspects
of the binomial theorem are found in the Chinese mathematical text Jiuzhang Suanshu
(Nine Chapters on the Mathematical Art), from approximately the 2nd century BCE.
Around the 11th century CE, the Chinese mathematician Jia Xian described a method
for calculating binomial coefficients, which corresponds to what we now refer to as
Pascal’s triangle. This method was popularized by Yang Hui in the 13th century CE,
and thus Pascal’s triangle is sometimes called the Yang Hui triangle in China. Isaac
Newton was the first to generalize the binomial theorem to non-integer number systems,
in 1687 in his Principia Mathematica.

2.4 The Inclusion-Exclusion Principle

Consider two subsets A and B of a set X. The union of A and B is the set
AUB:={xeX|x€ Aorx € B}.

Given that X is a finite set, we may wish to determine the number of elements in A U B.
Note, however, that in general the answer is not found by simply adding up the number
of elements of A and the number of elements in B. Indeed, some elements might be
contained in both subsets, and they would therefore be counted double. Since every
element in the intersection A N B is counted twice, the correct formula for the number
of elements in A U B is:

|AUB| = |A| +|B| - |AN B

Example 2.4.1. Consider the set X = {1,..., 100}, and our goal is to find the number
of integers in X that are neither divisible by 2 nor by 3. This problem can be solved with
the inclusion-exclusion principle.

12



Let A and B be the subsets of X consisting of numbers divisible by 2 and by 3,
respectively. The set A N B then consists of all the numbers divisible by both 2 and 3;
that is, the numbers divisible by 6.

There are 50 numbers in X divisible by 2, there are 33 numbers in X divisible by 3,
and there are 16 numbers in X divisible by 6. Thus, the total count of numbers in X not
divisible by either 2 or 3 is

100 - 50 - 33 + 16 = 33.

The inclusion-exclusion principle is a generalization of the formula for the number
of elements of A U B to any finite number of subsets of a set X. To see the pattern,
let us consider the case with three subsets A, B, and C of a set X. Now, if we wish
to determine the number of elements in A U B U C, we can again start by adding the
numbers |A|, |B|, and |C|. Every element that was in exactly one of the three subsets is
correctly accounted for, but we have overcounted the elements in AN B, AN C, and
B N C. If we subtract the numbers |A N B|, |A N C|, and |B N C| from our total, then we
have correctly accounted for every element that was in at most two subsets. However,
now we have subtracted every element in A N B N C three times from our count, so we
must add them again to arrive at the correct number:

JAUBUC| = |A|+|B| +|C]-|ANB|-]ANC|-|BNC|+|ANBNC|.

Thus, we see an alternating pattern emerging: Single sets are added, intersections of
two sets are subtracted, triple intersections are added again, and so on. The inclusion-
exclusion principle is stated with this alternating pattern.

Theorem 2.4.2. Consider a set X and a finite family of subsets A; C X indexed by
1 <i < n. Then the number of elements in the union of the subsets A; is given by

n
|A1u--~uAn|=Z<—1>"+‘( 2, lAnnonagl).
k=1

1<ij<---<ix<n

Exercises

2.1 Prove that ,
i
S()-»
k=0 (k
in three different ways: using the binomial theorem, by a direct proof by induction,

and by a combinatorial proof.
2.2 Prove that

Zn: (Z)(—nk - 0.

k=0
Conclude that
LgJ (n) B L(n—Zli/ZJ( " )
= 2k p 2k + 1
In this formula, the floor [x] of a number x is the largest integer below or equal to
X.
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23

24

2.5

2.6

2.7

2.8

The Chu—Vandermonde identity. Use the binomial theorem at the polynomial
(x+ 1)™(x + 1)" to show that

S )=

S =)

k=0

Show that

The binomial coefficient (zr:’) is also called the central binomial coefficient.
Show that the strict inequalities

4n 2
<(n)<4"

2n+1 n
hold forall n > 1.
Show that
S n+m+1
Zﬁ(k+i)=(m+1)!( 5 )
k=0 i=0 m+
Find the first 20 positive integers that are not divisible by any Fibonacci number

other than 1. This is https://oeis.org/A147956

Define the inclusion-exclusion sequence a, by ag := 0, a; := 1, and let a,+; be
the largest positive integer so that the number of positive integers 1 < x < @,
not divisible by any a; for 2 < i < n is a,. Determine the values for a,, for
1 <n<10.
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Chapter 3

Euclidean Division and the Rep-
resentability Theorem

3.1 The Well-Ordering Principle of the Natural Numbers

The induction principle of the natural numbers implies other important reasoning
principles. One of them is the well-ordering principle. The well-ordering principle has
many practical implications. For example, in the next section we will apply a variation
of the well-ordering principle, which we will describe below, to construct division with
remainder.

Theorem 3.1.1. Any inhabited subset of the natural numbers has a least element.

Proof. We will prove, by induction on 7, that every subset A C N with n € A has a least
element.

In the base case we have to show that every subset A C N containing O has a least
element. Since 0 is the least natural number, it follows that any subset containing O must
have a least element.

For the inductive step assume that every subset A C N containing n has a least
element. Our goal is to show that every subset A C N containing n + 1 has a least
element. There are two cases to consider: either 0 € A or O ¢ A. In the first case, where
0 € A is assumed, then A clearly has a least element. In the second case, define the
subset B € N to be

{xeN|x+1eA}.

In other words, B is the set of all natural numbers x such that x + 1isin A. Since n + 1
is in A by assumption, it follows that n € B. However, note that we are in position to
apply the induction hypothesis now: The set B must have a least element m.

We claim that m + 1 must be the least element of A. First of all, we know that
m+ 1 € A because m € B. Second of all, if x € A then we know that x is nonzero. This
means that x = x” + 1 for some natural number x’. In other words, we have x” + 1 € A,
which means that x” € B. Since m is the least element of B it follows that m < x’. This
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implies that m +1 < x" + 1, s0m + 1 < x follows. This shows that any element of A must
be greater than or equal to m + 1. In other words, m + 1 is the least element of A. O

We also have some variations of the well-ordering principle that apply to subsets of
the integers. For the following theorem, we say that a subset A C Z is bounded from
below if there is an integer b such that b < x for every element x € A. Similarly, we say
that a subset A C Z is bounded from above if there is an integer b such that x < b for
every element x € A.

Theorem 3.1.2. Let A be a subset of the integers. We make the following two claims:
1. If A is inhabited and bounded from below, then A has a least element.
2. If A is inhabited and bounded from above, then A has a largest element.

Proof. For the first claim, assume that A is inhabited and suppose that b < x for every
element x € A. Then we define the subset

B:={xe€eZ|x+beA}

The subset B is inhabited and it is bounded from below by 0. This means that B is in
fact a subset of the natural numbers, and so it has a least element by the well-ordering
principle, Theorem 3.1.1. Observe that x € B if and only if x + b € A, so if x is the least
element of B then x + b is the least element of A. This proves the first claim.
The second claim follows from the first, because if A is inhabited and bounded from
above, then the set
B={xeZ|-xeA}

is inhabited and bounded from below. Since the set B has a least element by the previous
claim, it follows that the set A has a largest element. O

3.2 Euclidean Division

The Euclidean division operation with a divisor d > 0 is the operation that returns for
each integer a the division with remainder of a by d. More specifically, the Euclidean
division operation of a by an integer d returns two integers, the quotient q and the
remainder r, such that 0 < r < d and such that

a=q-d+r

For example, if a := 23 and d := 5, then the Euclidean division operation returns ¢q := 4
for the quotient, and r := 3 for the remainder. Note that we have 0 < 3 < 5, and the
identity

23=4-5+3

holds. We will prove that for every d > 0 there is always a unique such pair (g, r) of
integers satisfying the two constraints for Euclidean division. Before we do so, we first
explain in more detail how to go about unique existence proofs.
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Suppose X is a set and P(x) is a property of the elements of the set X. For a concrete
example, which we will work out below, take X to be the set N of natural numbers and
P(x) to be the property that x = 0. Now suppose someone asks you to prove that there
is a unique element x that satisfies P(x). Then your task splits up in two parts:

1. First, you have to prove existence. Here, your task is to find a concrete element
a € X and prove that it satisfies the property P(a).

2. Second, you have to prove uniqueness. This means that you have to show for any
two elements x and y, if both P(x) and P(y) hold then we must have x = y. In
other words, in the uniqueness part of the proof you are tasked with showing that
there is at most one element satisfying P.

The existence part of the proof ensures that at least one solution exists, while the
uniqueness part of the proof ensures that there is at most one solution. Both steps
combined allow us to conclude that there exists exactly one element of x such that P(x)
holds. In alogical formula, it is customary to write 3! (< x)P(x) for the unique existence
property.

The example where we take X := N and P(x) := x = 0 is simple, but it captures the
essence of unique existence proofs. To show that there is a unique natural number equal
to 0, we first have to give an example of a natural number that is equal to 0. We simply
take the number O itself. For the uniqueness part of the proof, we have to show that any
two numbers that are equal to O are equal to each other. This is evident, because they are
both equal to 0. Thus we conclude that

3!<n€N)n =0.

Theorem 3.2.1. Consider an integer a and an integer d > 0. Then there exists a unique
pair of integers (q,r) such that 0 < r < d satisfying the identity

a=q-d+r.

Proof. Consider the set
A={x€eZ|xd<a}

of integers x whose product with d is at most a. We will show that A is bounded from
above and that A is inhabited. Together, this will imply by Theorem 3.1.2 that A has a
largest element, which will be our quotient g.

First, we show that the set A has an upper bound. There are two cases to consider:
eithera > O or a < 0. If @ > 0, the integer a is an upper bound because for any x € A
we have x < max(0,xd) < a. If a < 0 then the integer 0 is an upper bound because
xd < a < 0 implies that x must be negative.

Next, we observe that the integer —|a| is always in the set A, because —|a|d < —|a| < a.
Therefore it follows that the set A has a largest element, which we will call g.

By definition g satisfies gd < a and g is the largest such element. By maximality
of g it follows that a < (g + 1)d = qd + d. Now we take r := a — gd. Since gd < a
it follows that O < r, and since a < gd + d it follows that » < d. This completes the
existence of g and r.
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It remains to prove uniqueness. Suppose that (g, r) and (¢’,r’) are two pairs of
integers satisfying 0 < r < d, 0 <’ < d, and the equations

a=gqd+r, and a=q'd+r'.

It follows that

(g-q)d=r"-r.
However, the integer r’ — r satisfies the strict inequalities —d < ' —r < d and it is
divisible by d. This implies that r’ — r = 0, so it follows that r = r’. Now it also follows
that (¢ — ¢")d = 0. Since d was assumed to be positive, this implies that ¢ — ¢’ = 0,
from which it follows that ¢ = ¢’. This completes the proof of uniqueness. O

3.3 The Representability Theorem

The decimal representation of integers is well-embedded in our culture: Any integer
can be uniquely represented as a sequence of digits from 0 to 9, where the leading digit
is nonzero. When we write a number such as 231, it represents the number

210> +3-10" +1-10°.

Similar representations exists in binary (using only the digits 0 and 1), and in hexadecimal
notation (using the digits O to 9 and the letters A to F representing digits of values
10 through 15). The binary representation of the number 231 is 11100111, while the
hexadecimal representation of this number is E7. More generally, for any base k there
is a unique representation of all integers using powers of k.

Theorem 3.3.1. Consider a natural number k > 1. Then there exists for every natural
number n a unique list € of digits dy, . . .,d;—1 of length I, such that the inequalities
0 < d; < k hold for each i < I, such that the leading digit d;_; # 0, and satisfying the

equation
1

dik'.

-
n=
i=0

Before proving the theorem, let’s first discuss the main idea behind the proof. Since
we assumed that £ > 0, it follows from the Euclidean division theorem, Theorem 3.2.1,
that there is a unique pair (g, r) of numbers such that n = gk + r and O < r < k. This
gives us the first digit in the representation theorem': the number d := r.

The representability theorem would now follow if we already knew that g has a
unique representation. If dyp = r and if dy, . .., d;— is the unique representation of g,
then the list dy, . . ., d;—; is a unique representation of n. However, the usual induction
principle doesn’t allow us to make this step, because 7 is not necessarily the successor
of g. Therefore we need something stronger: the strong induction principle.

Theorem 3.3.2. Consider a property P(n) of the natural numbers, and assume that the
following two conditions hold:

'Tt should be noted that this digit appears last in the actual representation. It is the "ones digit" of the
representation.
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1. The property P(0) is true.
2. Ifthe property P(k) is true for all k < n, then the property P(n + 1) is true.
Then P(n) is true for all n.

The strong induction principle can be formulated more succinctly using the universal
quantifier. The universal quantifier V is used to express that a property is true for all
elements in a domain of discourse. In other words, when we say that a property P(n) is
true for all natural numbers n, we can write that as the logical formula

Y (neny P(n).

Using universal quantification, we can state the strong induction principle as follows.
Suppose that the following two conditions hold:

1. The property P(0) is true.
2. If the property Vi<, P(k) is true, then the property P(n + 1) is true.

Then P(n) is true for all n. The universal quantifier is helpful in the proof of the strong
induction principle.

Proof. Let P(n) be a property of an arbitrary natural number 7, and define

Q(n) := v(mSn)P(m)

Note that in order to prove that P(n) is true for all n, it suffices to prove that Q (n) is true
for all n. Indeed, if Q(n) is true for all n, that just means that P(m) is true for all m < n,
for all n. In particular P(n) is true for all n.

With that out of the way, assume that P(0) is true, and that Q (n) implies P(n + 1)
as in the induction step of the strong induction principle. Our goal is to show that P(n)
is true for all n, and we have already shown that it suffices to show that Q(n) is true for
all n. We proceed by induction on 7.

For the base case we need to prove that Q(0) is true, meaning that P(m) is true for
all m < 0. Note that m < 0 implies m = 0, so the base case follows from the assumption
that P(0) is true.

For the inductive step, assume that Q(n) is true. Our goal is to show that Q(n + 1)
is true. However, we have assumed that Q (n) implies P(n + 1). Now notice that if Q(n)
is true, meaning that if P(m) is true for all m < n, and if P(n + 1) is true, then P(m) is
true for all m < n + 1. In other words, Q(n + 1) is true. This completes the inductive
step and therefore the proof. O

Our earlier idea to prove the representability theorem can finally be made into a
proof.

Proof of Theorem 3.3.1. We prove the theorem by strong induction. For the base case,
note that the empty list satisfies the requirements vacuously since there are no digits in
the empty list and empty sums are set to be 0. Thus the empty list is a representation of
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0. Now suppose that £ = (dy, . .., d;—1) is a representation of 0 and ¢ is a list of nonzero
length . By the requirement that the leading digit d;_ is nonzero it follows that the sum

-1
Zdiki
i=0

is nonzero. Such a list is therefore not a representation of 0. The only representation of
0 is therefore the empty list.

Now suppose that every number m < n has a unique representation. To show that
the number 7 + 1 has a unique representation, first note that there is a unique pair (g, r)
of numbers g and 0 < r < k such that

n+l=gqgk+r.

There are two cases to consider: either g = 0 or g # 0. In the first case we find that
n+1=r < k. Welet ¢ be the list (dy) of length 1 with dy := r. Its leading digit is
nonzero because n + 1 is nonzero, and clearly we have

0
Zd,-k" =dy=n+1.
i=0

Furthermore, this representation is unique because any representation of n + 1 must be a
list of digits of length 1, which fixes its digit dp to n + 1.
If g # 0, then we have the inequalities

q+1<2g<gk<gk+r=n+1.

The second inequality follows from the assumption that k > 1. Since g+ 1 <n+ 1l it
follows that ¢ < n. This puts us in position to apply the induction hypothesis of the strong

induction principle: The number ¢ has a unique representation (e, ..., e;—1). Now we
define the representation of n + 1 to be (dy, . .., d;), where dy := r and d;1 := e; for
0<i<l.

This representation of n + 1 is unique, because for any representation of n + 1, its dy
must be equal to r, and the list (d1, . .., d;—1) must be a representation of ¢, which is
unique, thus completing the proof. O

3.4 Some Combinatorial Applications of Euclid’s Divi-
sion Theorem

Theorem 3.4.1. Consider two positive integers m < n. In any set of n integers, there is
a pair of distinct integers such that their difference is divisible by m.

Proof. Consider a set A of size n of integers, and list, for every integer in A its remainder
after division by m. Since the remainder is a number between 0 and m — 1, it follows
from the pigeonhole principle that there must be at least two distinct integers x and y
with the same remainder. It follows that x — y is divisible by m. O
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Theorem 3.4.2. Consider two positive integers m < n. In any set of n integers, there is
a nonempty subset such that the sum of its elements is divisible by m.

Proof. Consider the n integers ay, . . ., a,, and consider the sums
0, ay, a +ap, ..., a1+ +a,.

By Theorem 3.4.1 it follows that at there are at least two of these sums that differ by a
multiple of m. Notice that the difference of two such sums is of the form a; + - - - + ay,
so the theorem is proven. O

Theorem 3.4.3. Consider positive integers m and n such that m < 2" — 1, and consider
a set of integers S of size n. Then there are two distinct nonempty subsets of S such that
the difference of the sums of their elements is divisible by m.

Proof. There are 2% subsets of S, of which 2% — 1 are nonempty. By Theorem 3.4.1 it
follows that there are two distinct nonempty subsets of S such that the difference of their

sums is divisible by m. O
Exercises
3.1 Show that a number written as d;_1 - - - dy in its decimal representation is divisible

by 11 if and only if the alternating sum

-1 )
D(=Didi
i=0

is divisible by 11. For example, the number 2541 is divisible by 11 because
-2+5-4+41=0isdivisible by 11.

3.2 Zeckendorf’s representation theorem. Show that for any natural number n there is
a unique list € = (dp, ..., d;-1) of digits 0 and 1, such that its leading digit d;_,
is nonzero, no two consecutive digits are both 1, and satisfying the identity

~
—_

n= ) diFiy,

i

Il
(=)

where F; is the jth Fibonacci number. Zeckendorf representations have some fun
applications:

1. The Zeckendorf representation theorem can be used in the design of any
document to get meaningful relative font sizes: If d;_; - - - dy is the Zeck-
endorf representation of a font size n, then adding an extra zero at the end
gives the Zeckendorf representation d;_i - - - dp0 of a good next font size. If
you are working with font size 12, what is the next sensible font size?

2. Zeckendorf representations can also be used to convert miles to kilometers
with a fair degree of accuracy. Again, given a number n of miles, with
Zeckendorf representation d;_1 - - - do, add a 0 at the end to get the Zeckendorf
representation d;_1 - - - dg0 of the number of kilometers. How fast is 65 mph
in kph according to this conversion?
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Chapter 4

Linear Diophantine Equations

In this section we study linear Diophantine equations. These are equations of the form
apxo + -+ axxy = b,

with integer coefficients ay, . . . , ax. The objective of a linear Diophantine equation such
as the one above is to find integers xo, . . ., xx for which the equation holds, to study
conditions under which the equation has integer solutions, and ultimately to characterize
all solutions.

4.1 Divisibility

The simplest linear Diophantine equation is the equation ax = b in one variable x. The
condition of its solvability leads to the concept of divisibility.

Definition 4.1.1. We say that an integer a divides an integer b if there exists an integer
x such that the equation
ax=>b

holds. When a divides b, we write a | b and we say that a is a divisor of b. Sometimes
we also refer to b as the dividend.

The integers —1, 0, and 1 have special properties with respect to divisibility:

1. The integers 1 and —1 divide any integer b. Indeed, the integer b itself is a solution
to the equation 1x = b, and the integer —b is a solution to the equation —1x = b.

2. Every integer a divides 0. Indeed, x = 0 is a solution to the equation ax = 0.

3. If 0 | b for some integer b, then it follows that b = 0. Indeed, if Ox = b has a
solution, then b = 0 because Ox = 0. Furthermore, we observe that every integer
is a solution to the equation Ox = 0.

On the other hand, it follows that 0 1 1, and indeed that 0 1 » for any nonzero
integer b.
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4. Similarly, but slightly more complicated, if a | 1 for some integer a, then it follows
that @ = 1. Indeed, if ax = 1 has a solution, then the absolute value |a| of a
cannot be greater than 1, because its nonzero multiples would be of absolute value
greater than 1. Therefore it follows that |a| = 1, which proves the claim. In the
situation where a | 1, we say that a is invertible, or that it is a multiplicative unit,
because the solution to the equation ax = 1 is a multiplicative inverse of a.

If a is a nonzero integer, then there is always at most one solution to the equation
ax = b. In other words, if a nonzero integer a divides an integer b, then its quotient
is uniquely defined. On the other hand, we just saw that every integer is a solution to
the equation Ox = 0. The quotient is therefore not uniquely defined in this case. In the
following lemma we remove this ambiguity by imposing an extra bound on the solution,
that |x| < |b|. In the case where a is nonzero, then this condition is automatically
satisfied, while in the case where a = 0 it imposes the zero solution.

Lemma 4.1.2. Suppose that a | b. Then there is a unique integer x such that |x| < |b|
satisfying the equation ax = b. We will write a/b for this unique integer, which is called
the quotient of b divided by a.

Proof. There are two cases to consider: either a = 0 or a # 0. In the case where a = 0,
having a solution ax = b implies that » = 0. In this case, any x is a solution to the
equation ax = b. However, only one solution x satisfies |x| < b, namely x = 0. Thus,
the quotient 0/0 is set to be 0.

If a # 0, then the function x — ax is injective. This means that ax = ay implies
x = y. Consequently, there can be at most one integer x such that ax = b. Since we
assumed that there is at least one such a solution, it follows that it is unique. Moreover,
if ax = b, then |x| < |a||x| = |ax| = |b|, so x indeed satisfies the required bound. O

Remark 4.1.3. While we have given an informal description, the definition of divisibility
features the existential quantifier 3. When we write the logical formula 3(,ex)P(x),
this means that there exists an element x € X for which P(x) holds. The definition of
divisibility translates to the following logical formula:

al|b:=3ezyax=0>b.

In order to use existential quantification in proofs, it is useful to know how to break them
down systematically. There are two cases to consider: (1) How to prove an existence
claim, and (2) how to use an existence claim as an assumption to prove something else.

1. The principal way to prove that there exists an element x € X such that P(x) holds,
is to construct an element x of X and prove that the property P(x) is holds.

2. To use that there exists an x € X such that P(x) holds in the proof of another
property O, you may assume to have an element x and you may assume that the
property P(x) holds. However, in this scenario we may not assume anything else
about x unless that is otherwise warranted.

In the case of divisibility, in order to prove that a | b holds we must find a solution to the
equation ax = b, and in order to use that a | b holds as an assumption, we may assume
x is an integer for which the equation ax = b holds.
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Proposition 4.1.4. If d divides a and b, then d divides ax + by for any two integers x
and y.

Proof. Suppose that d divides both a and b. Let u and v be integers such that du = a
and dv = b. Then we have

ax + by = dux + dvy = d(ux +vy),
which shows that ax + by is a multiple of d. O

Sometimes, the hardest thing is to figure out how to rigorously prove a property that
looks completely self-evident. The following proposition, for instance, asserts that in
any set of k consecutive integers, exactly one of them is divisible by k.

There are, as is commonly the case in mathematics, several ways to approach this
problem, but the question is how to generate ideas towards a full proof. One good way
of generating ideas is by looking at special cases. In our problem at hand, a special case
of interest is the set {0, 1, ...,k — 1}. There should be exactly one element in the set
{0,1,...,k — 1} divisible by k.

Indeed, this is a direct consequence of the Euclidean division theorem: the only
element in this set that has remainder 0 after division by & is the integer 0. This suggests
using the Euclidean division theorem for the general claim as well. Furthermore, we will
also use the common proof technique of assuming something without loss of generality.

Proposition 4.1.5. In any set of k > O consecutive integers
{a,a+1,...,a+k—-1}
there is exactly one element divisible by k.

Proof. First, consider the function
r:{a,a+1,...,a+k-1} - {0,1,...,k -1},

where r(x) is defined to be the remainder of x after division by k. We claim that this
map is injective, meaning that if »(x) = r(y) for two elements x and y, then x = y. To
see this, consider two elements x and y in the set {a,...,a + k — 1}. Without loss of
generality we may assume that x < y. Indeed, either x < y or y < x holds, and these
situations are completely similar, so nothing is lost if we just assume that x < y.

We have the equalities x = g(x)k + r(x) and y = g(y)k + r(y), where g(x) and
q(y) are the quotients of x and y after division by k, respectively. Since we assumed
that r(x) = r(y), it follows that y —x = (g(y) — g(x))k. In other words, y — x is
divisible by k. Furthermore, we have 0 < y —x < k because both x and y are in the set
{a,...,a + k — 1}. It follows from Euclidean division theorem that the only integer
0 < z < k divisible by k is 0, so we find that y — x = 0. We conclude that x = y.

It now follows that every element y € {0, 1,...,k — 1} is the value of r of exactly
one element x € {a,a +1,...,a + k — 1}, because both sets have k elements and the
map r doesn’t take any value more than once. In particular, there is exactly one element
x €{a,a+1,...,a+ k- 1} whose remainder after division by k is 0. In other words,
exactly one element of this set is divisible by k. O
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Another approach that often works well, which was suggested in class by Lucy, is a
proof by contradiction. In proofs by contradiction, you assume the contrary and derive a
contradiction. If the contrary is impossible, then the original claim must be true.

Proof by contradiction. Let’s assume that there isn’t a unique integer in the set
{a,...,a+k -1}

divisible by k. There are two cases to consider: Either there are no elements divisible
by k, or there are at least two distinct elements divisible by k.

In the first case, by Euclid’s division theorem there is a unique pair (g, r) such that
a = gk + r, and since a is not divisible by k it must be the case that r # 0. Now it
follows that gk + k is an element in {a, . .., a + k — 1}, which is divisible by &, contrary
to our assumption. Thus we conclude that it is not true that none of the elements of
{a,...,a+ k — 1} is divisible by «.

In the second case, let x and y be distinct elements of {a,...,a + k — 1} that are
both divisible by k. Assume without loss of generality, that x < y. Then we have
0 <y—-x<k,and y —x is divisible by k. By the Euclidean division theorem, we must
have y — x = 0, which contradicts our assumption that x and y are distinct. O

4.2 Ideals of Integers

Ideals are a concept from ring theory, which studies rings, which are sets equipped with
addition, subtraction, and multiplication, satisfying the most familiar laws of arithmetic:

(x+y)+z=x+(y+2) (xy)z = x(yz)
O+x=x Ix =x
x+0=x xl=x
x—x=0 x(y+2)=xy+xz
—x+x=0 (x+y)z=xz+yz

X+y=y+ux.

Rings such as the integers satisfy additionally the law xy = yx of commutativity; such
rings are called commutative rings. Notice that the set N of natural numbers isn’t a ring,
because it lacks subtraction. Sets with the structure of a ring appeared in David Hilbert’s
Zahlbericht, but their formal definition was first given by Emmy Noether in Idealtheorie
in Ringbereichen, who was also the first to study them systematically.

An ideal of integers is a subset I C 7Z that contains 0, and contains the linear
combination kx + ly for any x,y € I, and any &,/ € Z. The subset {0} C Z satisfies
the conditions of being an ideal in a trivial way; this ideal is called the zero ideal. The
subset (a) := {ka | k € Z} also satisfies the conditions of being an ideal; ideals of this
form are called principal ideals, since they are generated by a single integer. In the
following theorem we show that every ideal of integers is of this form.

Theorem 4.2.1. For every ideal I C Z there is a unique natural number n such that
I =(n).
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Proof. There are two cases to consider: Either / is the zero ideal, or I contains a nonzero
integer. In the first case it is clear that I = (0), and that O is the unique natural number n
such that 7 = (n). Thus we focus on the nonzero case.

Suppose that I contains a nonzero integer x. Then I contains the integer |x|, because
|x| = £x. In particular, I contains a positive integer. Therefore it follows that I contains
a least positive integer n. To see that I = (n), consider an element x € I. By the
Euclidean division theorem, it follows that x = gn + r, where 0 < r < n. Notice that
r € I, since it is the difference x — gn of two elements in /. Since r is nonnegative and n
is the least positive integer in [, it follows that r = 0, which gives us that x = gn. Thus,
every element in / is a multiple of n.

Now suppose that I = (n) and I = (m) for two nonzero natural numbers n and m.
Then it follows that m = gn and n = pm. Thus, we see that m = (pg)m, which implies
that pg = 1. Furthermore, both p and g are positive integers, so we have p = 1 and
q = 1. This shows that m = 1n = n, establishing uniqueness. O

The set of ideals of Z is ordered by inclusion: We write I C J for two ideals I and J,
if every element of [ is an element of J. Note that (b) C (a) holds if and only if a | b.
The theory of ideals of integers is therefore closely related to the theory of divisibility of
integers.

4.3 The Ordering by Divisibility

The divisibility relation equips the sets of integers and natural numbers with a useful
extra structure, a partial ordering of their elements. The set of natural numbers equipped
with the divisibility relation is a poset, while the set of integers equipped with the
divisibility relation is a preorder, a slightly weaker structure.

Definition 4.3.1. A preorder consists of a set X and an ordering < of the elements of X,
such that

1. The ordering is reflexive. This means that x < x holds for every x.

2. The ordering is transitive. This means that if x < y and y < z both hold, then
x < z also holds.

A poset, or partially ordered set in full, is a preorder (X, <) satisfying additionally the
condition:

3. The ordering is antisymmetric. This means that if both x < y and y < x hold, then
X =y.

Theorem 4.3.2. The set of integers equipped with the divisibility relation | is a preorder,
and the set of natural numbers equipped with the divisibility relation | is a poset.

Proof. We first show that the set of integers with divisibility is a preorder. To see that
the divisibility relation is reflexive, note that x = 1 is a solution of the equation

ax =da.
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Therefore, it follows that a | a for every integer a. To see that the divisibility relation is
transitive, assume that a | b and b | ¢. That is, assume that we have integers x and y
such that ax = b and by = c. Then it follows that

a(xy) = (ax)y = by = c.

In other words, c is divisible by a. This completes the proof that Z equipped with the
divisibility relation is a preorder.

To see that the natural numbers equipped with divisibility forms a poset, it remains
to show that the divisibility relation is antisymmetric on the natural numbers. Suppose
that m | n and n | m; that is, that there are natural numbers x and y so that mx = n and
ny = m. By transitivity of divisibility it follows that m(xy) = m. O

The diagram below is the Hasse diagram of the positive divisors of the number 120,
a fragment of the poset of the natural numbers ordered by divisibility.

N

|
24 0

N

120

=

< 10 15
AN /\

1

Despite lacking antisymmetry, the preorder of the integers with divisibility is
essentially equivalent to the poset of natural numbers with divisibility. For every integer
a there is a unique natural number 7 satisfying n | a and a | n. This unique number is of
course the absolute value of a. The absolute value function x +— |x| preserves divisibility,
which means that a | b implies |a| | |b|, and it satisfies the logical equivalence

(a|b)A(b|a) & la] =|b]

(i

5

for any integer a and any natural number n. Order preserving maps f : (P,<p) —
(Q, <) from a preorder (P, <p) to a poset (Q, <o) that satisfy the logical equivalence
(x<py)A(y<px) & f(x) = f(y) forevery x, y € P are also called poset reflections.
Every preorder has a poset refection, but we will not need to go into that aspect of order
theory in this course.

4.4 Greatest Common Divisors

Some preorders (P, <) satisfy the property that for any two elements a, b € P there is a
maximal element below both of them. This property can be formulated succinctly as
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follows: An element d is a maximal element below a and b if it satisfies the logical
equivalence
x<a)A(x<b)e (x<d)

for every element x € P. If d satisfies this property, we also say that d is the meet of a
and b. It is common to write a A b for the meet of @ and b, if P is a poset in which any
two elements have a meet.

The definition of meets needs some explanation. It uses the conjunction (A) and
it uses logical equivalence (<). The conjunction p A g of two propositions p and ¢
is the proposition that both p and g are true. The logical equivalence p < g is the
proposition that p is true if and only if ¢ is true. In other words, it is the conjunction of
the proposition that p implies g and the proposition that g implies p.

If d is the meet of a and b, then the logical equivalence gives two implications back
and forth:

1. Any element x that is below both a and b, must be below d.

2. Any element x that is below d, must be below both a and b. In particular, d itself
satisfies d < d, so it follows that d < a and d < b. That is, d itself is below both
a and b, and by the first property it is the maximal such element.

We wouldn’t have this discussion if it didn’t apply for us. Indeed, we will show that
the preorder of integers with divisibility has meets. In the case of the integers, we will
call such meets greatest common divisors.

Definition 4.4.1. Consider two integers a and b. An integer d is said to be a greatest
common divisor of a and b if it satisfies the following logical equivalence

(xla)A(x|b) & (x]d).
for every integer x.

Thus, a greatest common divisor of a and b is an integer d that divides both a and b,
and any integer that divides both @ and b is a divisor of d. In other words, the signifier
"greatest" refers to the divisibility ordering of the integers.

Example 4.4.2. The greatest common divisor of 0 and 0 is 0. To see this, simply note
that the proposition
(x[0)A(x]0) & (x]0)

is true because any proposition is logically equivalent to the conjunction with itself.
Here we see why it was relevant to note that the word "greatest" refers to the divisibility
ordering: Any integer is a divisor of 0, but none of them are the greatest in the standard
ordering <.

Theorem 4.4.3. Any two integers a and b have a greatest common divisor, for which we
write gcd(a, b). Furthermore, there are integers k and [ satisfying Bézout’s identity

ax + by = ged(a, b).
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Proof. Consider two integers a and b, and let I := (a) and J := (b) be the principal
ideals generated by a and b. Now consider the set

I+J:={x+y|xel,yel}

of all sums of elements of I and elements of J. We claim that the set I + J is again an
ideal. It contains 0, because O = 0 + 0 is a sum of elements in / and J. Furthermore, to
see that / + J is closed under linear combinations of its elements, consider two elements
u,vel+J. Ifu=x,+y,andv = x, +y,, then we can write any linear combination
ku + lv of u and v in the form

ku+1v = (kx, + Ix,) + (ky, + 1y,),

which is the sum of an element in / and an element in J. Thus, it follows that / + J is an
ideal.

Now let d be the unique natural number such that 7 + J = (d), which exists by
Theorem 4.2.1. We claim that d is the greatest common divisor of @ and b. Notice that
a =a+0 € I+J,s0amustbe amultiple of d. Similarly, wehave b = 0+b € I +J,s0b
must be a multiple of d. In other words, d is a common divisor of a and b. Furthermore,
if e is any common divisor of a and b, then e is a divisor of any elementin / + J. In
particular, we must have e | d, allowing us to conclude that d is the greatest common
divisor.

The last claim follows, because d is an element of / + J, which consists elements of
the form ax + by. |

A very important condition on pairs of integers a and b, which occurs as an assumption
in many lemmas, propositions, and theorems, is the condition that gcd(a, b) = 1. In
other words, that any common divisor of a and b must be 1. Such numbers are called
relatively prime or coprime.

Definition 4.4.4. Two integers a and b are said to be relatively prime or coprime if
ged(a, b) = 1.
The following proposition is a must-know fact about the integers.

Proposition 4.4.5. Consider two relatively prime integers a and b, and an arbitrary
integer c. Then we have
al|bcsalc.

Proof. The fact that a | ¢ implies a | bc is obvious, since if ¢ is a multiple of a, then so
is bc. This establishes the converse direction of the logical equivalence.

For the forward direction, assume that a | bc. Since we have assumed that a and b
are relatively prime, there is a solution to the equation

ax+by=1.

Consequently, there is a solution to the equation cax + cby = c. However, both cax and
cby are divisible by a, so ¢ must be divisible by a. O
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4.5 Euclid’s Algorithm

The previous theorem shows that any two integers a and b have a greatest common
divisor ged(a, b), and that there are integers k and / such that

ka + b = gcd(a, b),

but it doesn’t reveal much about how the integers k£ and / can be found. Euclid’s
algorithm is an efficient way to compute the greatest common divisor and to find integers
k and [ establishing the greatest common divisor as a linear combination.

Proposition 4.5.1. Suppose a and b are two integers and b = qa + r. Then we have
gcd(b, a) = ged(a,r).

Proof. Suppose that d is a divisor of a. Then we claim that d | b if and only if d | r.
Indeed, since b = ga + r it follows that b is a linear combination of a and r, and also
that r is a linear combination of a and b. Thus, any divisor of a and b is also a divisor
of r, and any divisor of a and r is also a divisor of b. In other words, we have

d|besd|r.

It follows that d is a common divisor of a and b if and only if d is a common divisor of
a and r. This implies that their greatest common divisors coincide. O

As an immediate corollary, we obtain:
Corollary 4.5.2. If b is of the form ka + 1, then a and b are always relatively prime.

Proposition 4.5.1 implies a useful way of calculating the greatest common divisor of
two numbers. Suppose we want to calculate the greatest common divisor of 578 and
732. Then we write 732 in the form ¢ - 578 + r; that is, we write

732 =1-578 + 154.

By the proposition, it follows that gcd(732,578) = gcd (578, 154). We now proceed in
the same manner, by writing

578 =3-154 + 116,

and we observe that gcd(732,578) = gcd(154, 116). We proceed with this process until
we find that gcd(732,578) = ged(d, 0) for some number d. Once we reach this stage,
we conclude that gcd(732,578) = d. Putting words to action:

154=1-116+38 0cd(732,578) = ged(116, 38)
116=3-38+2 2cd(732,578) = gcd(38,2)
12=6-2+0 gcd(732,578) = ged(2,0).

Thus, we conclude that gcd(732, 578) = 2. The process outlined above is called Euclid’s
Algorithm.
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By closer inspection of Euclid’s algorithm, we can even find an integer solution to
the equation
ged(a, b) = ax + by.

The best way to see how this works is by example, so let us use the previous example.
Euclid’s algorithm has given us that gcd(732,578) = 2. In the second to last equation,
we find that 2 is a linear combination of 38 and 116; that is,

2=116-3-38

However, by the equation before that we see that 38 itself is a linear combination of 154
and 116. This can be used to express 2 as a linear combination of 154 and 116; that is,

2=116-3-(154-116) = 2=4-116-3-154.

Furthermore, 116 is a linear combination of 154 and 578, giving us that

2=4-(578-3-154)-3-154 = 2=4-578-15-154.

In the final step, we use that 154 is a linear combination of 732 and 578 to find

2=4-578-15-(732-578) = 2=-15-732+19-578.

Example 4.5.3. In class, we computed the greatest common divisor of 721 and 450.
These numbers were suggested by Marwa and Dylan.

721 = 1-450 + 271 1 =181 - (721 — 450) — 109 - 450
= 181721 — 290 - 450
1=72-271 - 109 - (450 — 271)

=181-271-109 - 450

450 =1-271+179

271 =1-179+92 1=72-(271-179) =37 -179
=72-271-109 - 179
179=1-92+87 1=35-92-37-(179 -92)
=72-92-37-179
92=1-87+5 1=35-(92-87)-2-87
=35-92-37-87
87=17-5+2 1=5-2-(87-17-5)
=35-5-2-87
5=2-2+1 1=5-2-2
2=2-140

Thus we find that gcd(721,450) = 1, in other words, that 721 and 450 are relatively

prime, and that

181721 -290-450 = 1.
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4.6 Linear Diophantine Equations in Multiple Variables

In this section we turn our attention to linear Diophantine equations in two variables,
that is, integer equations of the form

ax + by =c.

We begin by applying the theory of ideals to establish that this equation has a solution if
and only if ged(a, b) | c.

Theorem 4.6.1. Consider integers a, b, and c, and let d = gcd(a, b). The linear
Diophantine equation
ax+by=c

is solvable with integers x and y if and only if d | c.

Proof. The first part of the claim is equivalent to the claim that we have an equality of
ideals

(a) + (b) = (ged(a, b)).

We recall that the ideal / + J consists of sums x + y of x € [ and y € J. Furthermore, the
ideals (a) and (b) consist of multiples of a and b, respectively. Thus the ideal (a) + (b)
consists of all the linear combinations of a and b; in other words, all the possible integers
¢ for which there is a solution to the equation ax + by = c.

In Theorem 4.4.3 we defined gcd(a, b) to be the unique natural number d such that
(a) + (b) = (d). Such a natural number exists by Theorem 4.2.1. Now we observe that
the equality

(a) + (b) = (ged(a, b))

tells us exactly that the set of integers ¢ for which there exists a solution of the equation
ax + by = c has the same elements as the set of multiples of gcd(a, b). In other words,
a solution to ax + by = c exists if and only if ¢ is a multiple of the greatest common
divisor of @ and b. O

As an immediate corollary of the previous theorem, we note that:

Corollary 4.6.2. If a and b are relatively prime integers, then the linear Diophantine
equation
ax+by=c

is solvable for any c.

Now that we have established a necessary and sufficient condition for its solvability,
it remains to describe a way of finding all solutions, if there are any. Notice that we
have already collected quite a bit of useful information. Euclid’s algorithm allows find a
solution to the equation

ax+by=d,

where d = ged(a, b). Thus, if ¢ = kd, then we can solve

ax+by=c
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by first finding a solution axy + byo = d by Euclid’s algorithm. Then we find that
a(kxg) + b(kyo) = kd = c.

In other words, we can use Euclid’s algorithm to find a solution to the equation ax+by = ¢
if it has any.

Proposition 4.6.3. Consider integers a, b, and c, and assume that a and b are relatively
prime. If axg + byg = c is a solution to the Diophantine equation

ax +by=c,
then every solution is of the form
X =Xxo + bk, and y =yo—ak.
Proof. Suppose that ax + by = c is another solution. Then it follows that
a(x —xo) +b(y —yo) =0
In other words, we have a(x — xg) = —b(y — yo). Thus we see that b(y — yg) is divisible
by a. Since a and b are relatively prime, this implies that a | y — yo. Similarly, a(x —xo)
is divisible by b, and therefore it follows that b | x — x9. Furthermore, if ka = y — yg
and /b = x — xo. Then the equation

lab—kab =0

implies that k = [. In other words, x = xo + bk and y = yo — ak. O

Theorem 4.6.4. Suppose that axo, by = c is a solution to the Diophantine equation
ax +by =c.

Then every solution is of the form

b
x=x0+3k, and yzyo—gk.

Proof. This theorem follows from the previous proposition. If d = ged(a, b), then we
find that

a b ¢

TP
The integers & and g are relatively prime, so we find that x = x¢ + %k andy = yo — 5k
for some integer k. O

34



Exercises

4.1
4.2
4.3

4.4

4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14
4.15
4.16

4.17

4.18

Show thatif a | b, then d | b/a if and only if ad | b.

Suppose that a | b and b | ¢. Show thatif d | b/a thend | c/a.

Show that a | b implies ac | bc. Furthermore, show that if ¢ is nonzero, then
ac | bc implies a | b. Conclude that @” | b" if and only if a | b for any natural
number 7.

Suppose that d is a common divisor of two nonzero integers a and b.

(a) Show that the greatest common divisor of a/d and b/d is ged(a, b)/d.
(b) Show that d is a greatest common divisor of a and b if and only if a/d and
b/d are relatively prime.

Show that a | bc if and only if a/ged(a, b) | c.
Show that if d | a + b, then gcd(d, a) | ged(a, b) and ged(d, b) | ged(a, b).
Conclude that if a and b are relatively prime, then d is relatively prime to both a
and b.
Show that a” — 1 is divisible by a — 1 for every integer a.
Show that a™ + b" is divisible by a + b for any odd natural number n.
Show that a*> — b? is divisible by 8 for any two odd integers a and b.
Show that a® — a is divisible by 6 for every integer a.
Show that ¢’ — a is divisible by 30 for every integer a.
Show that any two consecutive Fibonacci numbers are relatively prime.
Goldbach’s theorem. Show that any two distinct Fermat numbers are relatively
prime.
Show that 2" — 1 and 2" + 1 are relatively prime, provided that m is odd.
Show that n! + 1 and (n + 1)! + 1 are relatively prime for all nonzero n.
(a) Prove the Fibonacci addition formula Fpin+1 = Fne1 Frne1 + FnFy.
(b) For any integer d and any two natural numbers m and n, show that if two of
the three following conditions hold, then so does the third:

1. d | Fp.
2. d | Fy.
3. d| Fhim.
(c) Show that the Fibonacci sequence preserves and reflects divisibility: we

have m | n if and only if F, | F,,.
Consider three integers a, b, and c. Show that the following are equivalent:

1. The integers a and b are both relatively prime to c.
2. The integer ab is relatively prime to c.

Prove that if @ and b are relatively prime integers, and # is an arbitrary natural
number, then in the arithmetical progression

a+kb, k=0,1,2,...

there are infinitely many numbers relatively prime to n.
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Chapter 5

The Fundamental Theorem of
Arithmetic

5.1 Prime Numbers

Definition 5.1.1. An integer a is said to be prime if it has exactly one positive proper
divisor. Any integer a # +1 that is not prime is said to be a composite number.

The numbers 0 and 1 are not prime. To see that 0 isn’t prime, simply note that any
positive integer is a proper divisor of 0. To see that 1 isn’t prime, note that 1 doesn’t
have any proper divisors. Indeed, it has exactly one positive divisor, namely 1 itself, but
this divisor isn’t proper. We also note that if @ > 1 is prime, then the number 1 is always
a positive proper divisor. Thus we see that a > 1 is prime if and only if the number 1 is
its unique positive proper divisor.

To see that the number 2 is prime, note that its positive divisors are a subset of the
set {1, 2} consisting of all the positive integers below 2. Its proper divisors are therefore
a subset of {1}. The integer 1 is indeed a positive divisor, so we see that 2 has exactly
one positive proper divisor.

To see that the number 3 is prime, note that its positive divisors are a subset of the
set {1,2, 3} consisting of all positive integers below 3. The number 1 is a proper divisor,
the number 2 doesn’t divide 3, and 3 itself is a divisor but it isn’t proper. Therefore we
see that the number 3 has exactly one positive proper divisor.

The number 4 isn’t prime, because the numbers 1 and 2 are two distinct proper
divisors of 4. This process of finding all primes up to a desired bound is formalized in
the sieve of Eratosthenes, which we will now describe. Figure 5.1 displays the sieve of
Eratosthenes up to 1350.

The sieve of Eratosthenes is an iterative process that generates at stage n a set P,
of numbers known to be prime at stage n, and a set Q,, of prime candidates. In other
words, the sets P,, form an increasing sequence

PpcPicPyC---
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Figure 5.1: The sieve of Eratosthenes up to 1350: The number 1 and every composite number are
marked in black, leaving just the primes in white circles.
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of sets of numbers known to be prime, where at each higher stage the set of known
primes becomes larger, and the sets Q,, form a decreasing sequence

Q2012022

of candidates, from which we pick our next prime. We will define the sets P,, and Q,, by
a recursive process. Initially, the set Py is empty and Qo = {n € N | n > 2} is the set of
all numbers > 2. Now we define P, to be P,, U {p(n)}, where p(n) := min(Q,), and
we define

On+1:=0n \ {kp(n) | k = 1}.

In other words, the nth prime p(n) is the minimal element of Q(n), and the set Q.+ of
candidates is the set Q,, minus all the multiples of p(n). In the first five stages, these
sets look as follows:

n Py, Oy

0 0 (2.3.4.5,6,7.8,.. )

1] 2 (3,5,7,9,11,13,15,.. .}

2 | 2.3} (5,7,11,13,17,19,23, .. .}
3| (2,35 (7,11,13,17,19,23,29, . . .}
4 {2,3,5,7} {11,13,17,19,23,29,31,...}
5 {2,3,5,7,11} {13,17,19,23,29,31,37,...}

Notice that not only the minimal element of Q,, is prime, but every element g € Q,
such that ¢ < (max(P,))? is prime. This is because if ¢ < (max(P,))? is composite,
then its lowest factor must be a prime number p < max(P,,), i.e., it must be a prime
number in P,. However, all the multiples of the primes in P, have been removed from
Oy, so there are no such composite numbers.

We can use this observation to obtain the list of all primes below 100, at stage 5 in
the sieve of Eratosthenes. The list of primes below 100 is

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, 83, 89, 97.

The sieve of Eratosthenes either terminates, i.e., it reaches a stage for which Q,, is
empty, or there are infinitely many primes. We will now show that there are infinitely
many primes. In the following lemma we use the concept of nontrivial divisors, which
are divisors d of a natural number n such that d # 1. The concept of nontrivial divisors
should not be confused with the concept of proper divisors, which are divisors d of a
natural number 7z such that d # n.

Theorem 5.1.2. Any natural number n > 1 has a least nontrivial divisor, and this
divisor is prime.

Proof. Suppose that n > 1. Then the set of nontrivial divisors d # 1 of n contains
the number n, so it has a least element p by the well-ordering principle of the natural
numbers. Then the set of divisors of p itself is the set {1, p}, because any divisor of p
also divides n, and p is assumed to be the least nontrivial divisor. This shows that p has
exactly one proper divisor, and therefore p is prime. O
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5.2 The Infinitude of Primes

The theorem asserting the infinitude of primes asserts that no finite set of primes is the
set of all primes. Many proofs of the infinitude of primes require the following lemma:

Lemma 5.2.1. If a and b are relatively prime integers, then any prime divisors of a are
distinct from any prime divisors of b.

Proof. Suppose that a and b are relatively prime, and that p and g are prime divisors of
a and b, respectively. By the assumption that @ and b are relatively prime, it follows
that p 1 b and that g 1 a. Therefore it follows that p and ¢ cannot be the same. O

Theorem 5.2.2. There are infinitely many prime numbers.

Euclid’s proof of Theorem 5.2.2. We will prove that there are infinitely many prime
numbers by showing that for any finite set of prime numbers, there is a prime number
not belonging to the finite set.

Consider a finite set {po, ..., px} of primes, and define

n:=1+ﬁpi

Then there exists, for each 0 < i < k, a natural number g; such that n = g;p; + 1. Indeed,
we can simply define
k
qi ‘= 1_] Pj-

J=0,j#i
Since n can be written in this way, it follows that n is relatively prime to each p;.

Consequently, the least prime divisor of n is relatively prime to each p;. In other words,
the least prime divisor of n is not in the set of primes {py, ..., px}. O

Saidak’s Proof

There are many proofs of the infinitude of primes. The following is due to Filip Saidak
[Sai06], who published his proof in 2006, based on the idea that if n = ab is the product
of two numbers that are relatively prime and both at least 2, then n must have two prime
factors.

Saidak’s proof of Theorem 5.2.2. Let Ny := 1, and define
Nyt = Npy(Np + 1).

We claim that N,, has at least n prime factors. In the base case, we note that it is indeed
true that 1 has at least zero prime factors. For the inductive step, suppose that N,, has at
least n prime factors. The number N,, + 1 is relatively prime to N, so its prime factors
are all distinct from the prime factors of N,,. Furthermore, we have 1 < N, + 1, so
N, + 1 indeed has at least one prime factor. Thus it follows that N,,;; has at least n + 1
prime factors, and therefore there must be infinitely many primes. O
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Goldbach’s Proof

Our next proof of the infinitude of primes is due to Goldbach, from 1730. In the
18th century, it was customary among mathematicians to share their findings private
correspondences. In July of 1730, Goldbach wrote a letter to Euler, in which he
established that all distinct Fermat numbers are relatively prime, and that hence there
must be infinitely many primes.

Recall that the Fermat numbers ®,, are defined by

@, :=2"" +1.
Lemma 5.2.3. Any two distinct Fermat numbers are relatively prime.

Proof. Consider two distinct natural numbers m and n, and assume that m < n. Recall
from Exercise 1.13 that
¢n—2:[]¢k

k<n

Thus we see that @,, | ®, — 2. It follows that any common divisor d of ®@,, and ®,, is
also a divisor of 2, i.e., d = 1 or d = 2. However, all Fermat numbers are clearly odd,
and this implies that any common divisor of ®,, and ®,, is 1. In other words, ®,,, and
@, are relatively prime. O

Goldbach’s proof of Theorem 5.2.2. Since any two distinct Fermat numbers are rela-
tively prime, and since any number # > 1 has a prime divisor, it follows that if we pick a
prime divisor of each Fermat number ®,,, then we picked infinitely many distinct prime
numbers. O

The Furstenberg proof, following Cass—Wildenberg

The following proof of the infinitude of primes is, in its essence, due to Hillel Furstenberg
[Fur55]. In its original formulation, this proof makes clever use of a topology on Z.
Although topologies are not hard to define, motivating them is beyond the scope of this
course. We will therefore present a revised version of Furstenberg’s proof, following
Daniel Cass and Gerald Wildenberg [CWO03].

The Cass—Wildenberg approach to prove the infinitude of primes makes use of the
concept of a periodic subset of Z. A subset A C Z is said to be periodic with period n,
or simply periodic if we merely assume such a natural number 7 to exist, if we have

xeA & x+neZ.
Thus, if A is a periodic subset of Z with period n, and x € A, then
x+kneA

for all k € Z. In particular, all inhabited periodic subsets of Z are infinite. We note two
basic facts about periodic subsets of Z, which we leave to the reader to verify:
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1. If Ay,..., A, is a finite family of periodic subsets of Z, each with their own
periods, then the union
AjU---UA,

is again a periodic subset of k. The period of the union is the least common
multiple of the periods of the subsets A;.

2. If A is a periodic subset of Z, then its complement A := {x € Z | x ¢ A} is
periodic with the same period.

The Furstenberg proof of Theorem 5.2.2, following Cass—Wildenberg. Consider the sub-
sets
Sp =1{kp | k €Z},

where p is a prime number, and define

s:= ) s

p prime

Since every integer besides +1 is divisible by a prime, it follows that S consists of all
the integers besides +1. The complement of S is therefore the set {—1, 1}. Note that
the subset {—1, 1} of Z cannot be periodic, since is inhabited and finite. This allows us
to conclude that the subset S of Z is not periodic. However, if there were only finitely
many primes, then S would be periodic because it would be a finite union of periodic
subsets of Z. Thus we conclude that there must be infinitely many primes. O

5.3 The Fundamental Theorem of Arithmetic

The following proposition is due to Euclid, who included it as proposition 30 of book
VII of the Elements.

Lemma 5.3.1. Suppose that p is prime, and that a is an integer. Then either p | a or
ged(p,a) = 1.

Proof. The greatest common divisor of p and a is in particular a divisor of p, so it is
either 1 or p. If gcd(p, a) = p, then we have p | a. O
Proposition 5.3.2. Consider a positive integer a. The following are equivalent:

1. The integer a is prime.

2. We have a > 1, and for any two integers b and c such that a | bc, we have that
alboralec.

Proof. Suppose first that a is prime. Since 0 and 1 aren’t prime, it follows that a > 1.
Now consider two integers b and ¢ such that a | bc. There are two cases to consider:
either a | b, in which case we are done immediately, or a 1 b. In the case where a 1 b, it
follows from Lemma 5.3.1 that a and b are relatively prime. This allows us to apply
Proposition 4.4.5, by which we conclude that a | c.
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For the converse, suppose that for any two integers b and ¢ such that a | bc, we
have a | b or a | ¢, and let d be a proper divisor of a. Now consider any positive
proper divisor d of a, and write a = dk. Then it follows in particular that a | dk, so by
assumption we have either a | d or a | k. The first condition can be ruled out, because d
is assumed to be a proper divisor and therefore a ¥ d. Thus we find ourselves in the
second case, where a | k and k | a. The integer k is also positive, since a and d are
positive, so it follows that a = k. This implies that d = 1, and hence we conclude that a
is prime. O

Theorem 5.3.3. For any natural number n > 0, there is a unique list { = (pg, ..., pi—-1)
of length I, consisting of primes po < p; < -+ < p;_1 such that

This unique list of primes is called the prime decomposition of n.

Proof. We apply strong induction on n, with base case 1. In the base case, we let £ be
the empty list. The empty list satisfies the increasing primes condition vacuously, and
empty products are 1 by definition, so the empty list is indeed a prime decomposition of
1.

For the inductive step, recall that any natural number n + 1 > 1 has a least prime
divisor. If p is the least prime divisor of n + 1, then it follows that (n + 1) /p < n. By the
strong induction hypothesis we have a unique prime decomposition (g, - .., g;—1) of
(n+ 1)/p. Now define the list € := (po, p1,...,p1) by po := p and p;4+; := q;. Then
each p; is a prime divisor of n + 1, and since py is the least prime divisor of n + 1 we
have the inequalities

po<pi<---<pr.

Furthermore, we have

] 1
n+l=p-((n+D/p)=po-[ [pi=]]pr:

i=1 i=0

This proves that the prime decomposition of n + 1 exists.
To show that the prime decomposition of n + 1 is unique, let (rg, - - - ,r¢) be a prime
decomposition of n + 1. The smallest prime divisor p of n + 1 then divides the product

-t

Pl

ri.
i=0

This implies that p | r; for some 0 < i < k, i.e., that p = r;. However, p is assumed
to be the smallest prime factor of n + 1, so it follows that p = ro. Now it follows that
(r1,...,rr) is a prime decomposition of (n + 1)/p, which is unique, and therefore we
conclude that n + 1 has a unique prime factorization. O
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5.4 Legendre’s Formula and Kummer’s Theorem

In some cases we can give precise expressions of the prime factorization of a number.
We will describe here two such cases: The prime factorization of the factorial n!, which
is due to Adrien-Marie Legendre, and the prime factorization of the binomial coefficients
(), which is due to Ernst Kummer. These explicit formulas will be useful in the study
of the distribution of the primes.

Definition 5.4.1. The p-adic valuation of a positive integer 7 is the largest exponent m
such that p™ | n. That is, it is the unique natural number m such that
“

ptln o k<m

for every natural number k. We will write v, (n) for the p-adic valuation of .

For example, the 2-adic valuation of 24 is v,(24) = 3 because the exponent of 2 in
24 = 23.3is 3, and its 3-adic valuation is v3(24) = 1 because the exponent of 3 in 2> - 3
is 1. Another useful fact is that the p-adic valuation of the greatest common divisor of
two numbers is the minimum of their respective p-adic valuations. More generally, if
the greatest common divisor is taken of multiple natural numbers we obtain

vp(ged(ny,...,ng)) =min(v,(n1),...,vp(nk)).
Likewise, the p-adic valuation of the least common multiple of ny, ..., ng is
vp(em(ny, ..., ng)) = max(vp(n1),...,vp(ng)).

For example the greatest common divisor and the least common multiple of 60 = 22-3-5
and 525 = 3-5% -7 are

gcd(60,525) =3-5=15  and lem(60, 525) = 2% -3 .52 .7 = 2100.
Theorem 5.4.2 (Legendre’s formula). For any natural number n, we have
o T L3l

Proof. Another way of stating Legendre’s formula for n! is that the p-adic valuation of

n!is given by
vp(nl) = Z {%J .
k=1 LP
To see this, note that each integer 1 < x < n divisible by p contributes a factor p to n!.
Each integer 1 < x < n divisible by p? contributes a second factor of p to !, and more
generally, each integer 1 < x < n divisible by p* contributes a kth factor of p.
Since there are [ﬁj integers from 1 to n divisible by p*, it follows that the number

of factors of p in n! is
> { ; J .
E |-
=1 LP
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Corollary 5.4.3 (de Polignac’s formula). Consider a natural number n > 1 written in

its base p representation
I

Dlai',
i=0
where we have 0 < a; < p for each i. Then p-adic valuation of n! is
I
n-— Zi:O ai

vp(nl) = o1

Proof. Given the base-p representation of n, the base-p representation of [ﬁj is given
by dropping the digits first k£ digits in the base-p representation of n:

no_ I-k
< | =4kt akp+---+ap .
4

Using this observation, we obtain:

This gives

Example 5.4.4. We can use Legendre’s formula and de Polignac’s formula to compute
the prime factorizations of binomial coefficients. For example, it follows immediately
from Legendre’s formula that all the prime factors of the central binomial coefficient

(%)

are bounded from above by 64. Moreover, every prime 32 < p < 64 occurs with p-adic
valuation 1. Furthermore, the central binomial coefficient (g‘z‘) is not divisible by any
prime %32 < p < 32, showing that the 23-, 29-, and 31-adic valuations of (gg) are 0.
To compute the p-adic valuations for the lower primes, we use de Polignac’s formula,
for which it is necessary to write 32 and 64 in base p. Using letters A, B, C, and so
forth for digits representing values of 10 and higher, we gather all the calculations for de
Polignac’s formula in the following table:
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p | 32basep 64basep 2wl

p—1
2 | (100000); (1000000), 1
3 (1012)3 (2101)3 2
5 (112)s (224)s 0
7 (44)7 (121)7 2
11 (2A)n (5911 1
13 (26)13 (4013 0
17| (1F)17 (3D)17 1
19| (1D)y (3719 1

Thus, we see that

64
(32)=2.32-72.11-17-19-37.41.43.47-53-59-61.

Even though the binomial coefficient (gg) is a fairly large number with 19 decimal digits,
we didn’t need to evaluate it in order to obtain its prime factorization. In fact, without
fully evaluating it, we can now determine the last decimal digit of (gg) by the following
procedure: Start with dy := 1 and let d;;| be the remainder of the product d; p:"i after
division by 10, where p; is the ith prime power in the prime factorization of (g‘z‘) This
gives:

di=2,dy=8,d3=2,d4=2, ..., d;3 =4

The last decimal digit of ($3) is therefore a 4.

In the following theorem, which is due to Ernst Kummer [Kum52], we will compute
the p-adic valuation of the binomial coefficients in full generality. Before we do this, we
need to recall addition of two natural numbers written in base p. Suppose that

~

m:Zaipi and n= bip'.
. =

1=
Then their sum m + n has base-p representation

In

m+n:Zcipi,

i=0

where c; is obtained by the following recursive procedure, simultaneously with a number
u(m,n); € {0, 1} recording whether a 1 needs to be carried over to the next digit: Set
u(m,n)y = 0 and define

(a; + b; + u(m,n);,0) ifa; + by + u(m,n); < p
(a; + b +u(m,n); — p,1) ifa; + b; + u(m,n); = p.

(Ci7 u(m7n)i+l) = {

Theorem 5.4.5 (Kummer’s Theorem). Consider two natural numbers m and n. The

p-adic valuation of the binomial coefficient (m;") is the number of carries in the addition
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of m and n in base p: If m and n have base p-representations

Im Iy
m :Zaipi and n= Zbil)i7
i=0 i=0
then
+
v,,(m n) =#{0<i <, |u(m,n); =1}.
m

Proof. Write s, (x) for the sum of the digits of the p-adic representation of natural
number x. By de Polignac’s formula for the p-adic valuation of (m + n)! we find that

vp(mn: n) =vp((m+n)) —vp(m!) —v,(n!) = Sp(m) +p(n) = 5p(m +n).

p-1

The p-adic representation of m + n is given by

lm+n

m+n= Z cip',
i=0
where
_Jai+b; +u(m,n); ifa; + b; + u(m,n); < p
' a; +b; +u(m,n); — p otherwise.

We therefore find that the numerator in de Polignac’s expression for v, (™*") contains a

term p — u(m, n);4 for every time u(m, n);4; = 1. That is, the numerator is of the form
C(p — 1) where C is the number of carries. This proves the theorem. O

Kummer’s theorem can be used to show that the binomial coefficient (}) always
divides the least common multiple of 1,2, ..., n. In order to prove this result, note that
the largest exponent m such that p™ < n is the number

m = |log, (n)].

In other words, if m is the largest integer not exceeding log, (n), then the leading digit
in the base-p representation of n belongs to p™.

Corollary 5.4.6. For any 0 < k < n we have

(Z) | Iem(1,...,n).

Proof. Suppose that the base-p representation of n is

I
n= Z a;p'.
i=0

Then there are clearly at most / carries when we add k to n — k. Since p’ < n, it follows
that .,
() | lem(1,. .., n).

Since this is true for every prime p < n, and (2) contains only prime divisors up to n,
the claim follows. O
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5.5 Bertrand’s Postulate

In 1845, Joseph Bertrand observed that for any 1 < n < 3,000,000 there is always
a prime between n and 2n, and conjectured that this must be true for all n [Ber45].
Nowadays on a computer, it is really easy to generate lists of primes p; so that the
prime p;4 is strictly below 2p; for each i. Taking each time the largest possible prime
satisfying this requirement, we obtain the list

2, 3,5, 7, 13, 23, 43, 83, 163, 317, 631, 1259,
2503, 5003, 9973, 19937, 39869, 79699, 159389,
318751, 637499, 1274989, 2549951, 5099893, ....

The primes in this list are sometimes called the Bertrand primes, and they are listed
as A006992 in the On-Line Encyclopedia of Integer Sequences [Fou25]. Bertrand’s
conjecture was proven five years later by Pafnuty Chebyshev, who contributed many
more results about the distribution of the primes using analytical methods [Che50]. We
will give a proof by Paul Erdds [Erd32], which can be obtained through the methods of
the previous section.

Lemma 5.5.1. For any positive integer n, we have

I—[p<4".

p<n

Proof. The proof is by induction on n. For n = 1, there are no primes p < 1, so the
product over all the primes p < 1 is just 1, which is indeed strictly below 4. Likewise,
the theorem holds for n = 2, because 2 < 42,

For the inductive step, assume that [],,,, p < 4". In order to show that

1_[ p < 4n+l

p<n+l

there are two cases to consider: Either n + 1 is even or n + 1 is odd. The even case is

immediate: We have
1_[ p= l_[p<4”<4"“.

p<n+l p<n

In the odd case, there is an m such that 2m + 1 = n + 1. Since every prime m +2 < p <

2m + 1 divides the binomial coefficient (2":n+1), it follows that

2m + 1 2m + 1
< . < 4m+1.
IR WA I I

p<2m+1 p<m+l

2m+1
m

coefficients (**') and (>*) occur separately in the expansion of (1+1)2"*!. However,

they are equal, so neither of them can exceed %22’”” = 4™ which proves the lemma. O

To finish the proof, it suffices to show that ( ) < 4", This follows, since the binomial

Theorem 5.5.2. For any positive integer n, there is a prime n < p < 2n.
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Proof. Consider an integer n > 2 for which there is no prime n < p < 2n, and let p be a
prime divisor of the central binomial coefficient (2;‘) Such a prime divisor must then be
less than or equal to %n, since ¢> 1 (2n)! for any prime %n < g < n, while ¢* | (n!)%.
Now, if m is the largest exponent such that p" | (2:) then it follows from Corol-
lary 5.4.6 that
p™ < 2n.

This allows us to estimate the number of primes for which p2 | (er’) Indeed, if m > 2,

then it follows that
p < V2n <Von.

This shows that there are at most V2n primes in the prime factorization of (2,:‘), of which
the exponent is larger than 1. It follows that

4qn 2n \an NP

p<2n/3

where the first inequality was established in Exercise 2.5, and the last inequality follows
from Lemma 5.5.1. Rearranging this strict inequality, we obtain

45 < 2n+ 1)(2n) V" < (2n)V21+L,

Taking logarithms base 2 on both sides, we find that

2
g < ?n < (V2n+ 1) log, (2n)

We see that this strict inequality fails for n > 2° = 512, since
28 =512 £330=(2°+1) - 10.

We conclude that Bertrand’s postulate must be true for all n > 512. Using the sieve of
Eratosthenes up to 1350, as displayed in Figure 5.1, we see that the Bertrand primes are
indeed primes up to 631, which is sufficient and thus the theorem is proven. O

Exercises

5.1 In the number grid provided at the end of the introduction, shade the numbered
cells in two colors:

1. Leave all the prime numbers unshaded.
2. Shade the number 1 and all square-free composite numbers in one color.
3. Shade all non-square-free numbers in the other color.

Explain your method.
5.2 Show that there are no primes p such that p + 8 and p + 22 are also prime.

5.3 ShOW that
‘ p
k

for any O < k < p, and any prime number p.
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54

5.5

5.6

5.7

5.8

59

5.10

5.11

Show that
p-1
2

47 =1 (mod p)

for any odd prime number p.
Define the nth Mersenne number M, to be

M, =2" 1.

Show that if n is composite, then so is M,. Conclude that if M,, is prime, then
so0 is n. Prime numbers of the form M, for some prime number p are called
Mersenne primes.

A natural number 7 is said to be perfect if it is the sum of its proper divisors.
Show that an even number is perfect if and only if it is of the form 2P~ M p» Where
M, is a Mersenne prime.

Consider a fixed set {py, ..., p,} of n distinct primes. Given a natural number £,
how many numbers can be written as a product

mi mp
p] Pn

such that m| + --- +m,, = k?
Suppose that n > 3 and p is a prime such that 3n < p < n. Prove that

Pt (Zn")

Prove the following identity due to Bakir Farhi [Far09]:

1 n\ (n n\\ _lem(l,...,n+1)
) )

Determine the number of trailing zeros in the decimal representations of 100! and
2101,
(a) Show that (;’1) is odd if and only if there are no carries occur when adding m
and n — m in their binary representations.
(b) Show that (") is odd for every 0 < m < n if and only if n is of the form

2k _ 1.
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Chapter 6

Polynomials

6.1 Polynomials with Integer Coefficients

Definition 6.1.1. An polynomial with integer coefficients in one variable x is an
expression of the form

f(x) =ax" + Ap1x" "V + -+ a,

in which we require that if n # O then the leading coefficient a,, is nonzero. The integers
ay, are called the coefficients of f(x). The zero polynomial is the constant polynomial 0
and the unit polynomial is the constant polynomial 1. The degree of a polynomial is the
highest power of x with a nonzero coefficient.

There is a subtle, yet important distinction between polynomials and the functions
they describe, which has to do with equality of polynomials. Two polynomials

1 1

apx" + a1 X"+ -+ ag and by x"+ b, 1 X" + -+ b

are said to be equal if their coefficients are equal, meaning that a; = b; forall 0 <i < n,
while functions are considered equal if their values are equal. This is an important
distinction, because for some number systems such as the integers modulo 7, polynomials
aren’t necessarily equal as polynomials when they are equal as functions. For instance,

by Fermat’s Little Theorem we have that
xP =x (mod p),

while the polynomials x” and x clearly can be distinguished by their coefficients.
Nevertheless, we will show in Corollary 6.2.7 that two polynomials with integer
coefficients have equal coefficients if and only if they define equal functions.

The viewpoint that polynomials are formal expressions, and not functions, was
emphasized by Leopold Kronecker, in the 19th century. With this distinction in mind,
we make the following definition.
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Definition 6.1.2. A function f : Z — Z is said to be polynomial in the integers if there
is a polynomial with integer coefficients such as the above, such that

F(X) = apx™ + ap1x" '+ +ag

for all x € Z.

Remark 6.1.3. Polynomials can be added, subtracted, and multiplied in the same way
as integers. To add two polynomials, we add their corresponding coefficients, taking
missing coefficients as zero when necessary. Polynomials are multiplied by the formula

n m n m
(Z aixi) (Z bjxj) = Z Z a;ibx'™
i=0 =0 i=0 j=0
n+m n
= aibk_ixk.
k=0 i=0

These operations of addition, subtraction, and multiplication, polynomials satisfy the
laws of arithmetic. More precisely, the polynomials with integer coefficients form a
commutative ring.

Definition 6.1.4. A root of a polynomial f(x) is an element r such that

f(r)=0.
Sometimes we will write N(f) for the set of roots of f.

Theorem 6.1.5 (Factor Theorem). Consider a nonzero polynomial f(x) of degree n.
An integer r is a root of f(x) if and only if there is a polynomial g(x) of degree n — 1
such that f(x) = (x —r)g(x).

Proof. We will prove the claim by induction on n. In the base case f(x) is a nonzero
constant polynomial, so it has no roots and there is no polynomial g(x) of degree —1
such that f(x) = (x —r)g(x).

For the inductive step, it is clear that if there is a polynomial g(x) such that
f(x) = (x —r)g(x), then r is a root of the polynomial f(x). For the converse, suppose
that r is a root of f(x). Then

fx)=f(x)=f(r) =an(x" =)+ +a;(x—r).
By the formula for the difference of nth powers, we can factor x* — r" as

== (=),

for some polynomial g (x) of degree k — 1. Now let

n

g(x) = ) arqi(x).

k=1

Then we have f(x) = (x — r)gx(x) by rearranging the terms. O
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Figure 6.1: A polynomial of degree 3 obtained by Lagrange interpolation.

The factor theorem has some useful corollaries. The first is that a polynomial of
degree has at most n roots, and the second is a factor theorem for modular arithmetic,
which we will establish in the next section.

Corollary 6.1.6. A polynomial of degree n with nonzero leading coefficient has at most
n roots.

Proof. The proof is by induction on the degree n. If f(x) is a constant polynomial of
degree 0 and its leading coefficient is nonzero, then f(x) is always nonzero and so f(x)
has no roots.

For the inductive step, assume that all polynomials of degree n have at most n roots,
and consider a polynomial f(x) of degree n + 1. Then either f(x) has no roots, in which
case we are done immediately, or f(x) has a root r, in which case f(x) factors as

J) = (x-r)gx)

by the Factor Theorem, where g(x) is a polynomial of degree n. Then the product
(x —r)g(x) = 0ifand only if x —r = 0 or g(x) = 0. Thus we see that x is a root of
f(x) if and only if x = r or x is a root of g(x), so there are at most n + 1 roots of the
polynomial f(x). O

6.2 Lagrange’s Interpolation Theorem

Lagrange’s Interpolation Theorem establishes that for any set of data points, there is
always a way of defining a polynomial that exactly matches the data. Moreover, it
gives the unique way of defining such a polynomial in the lowest degree. Lagrange’s
Interpolation Theorem has the important consequence that any polynomial of degree 7 is
uniquely determined by any n + 1 of its values. We will also use Lagrange’s Interpolation
Theorem in the next section to derive a divisibility property of polynomials due to
Hensel.

The idea underlying Lagrange’s Interpolation Theorem is to break the problem into
several subproblems: For each data point (x;, y;), we create a polynomial that has roots
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at x; for all the other data points (x;,y;). This is very easy to do: we just take the
product

8i(x) = (x=x0) - (x —xi—1)(x = xj41) -+ - (x = x;).

Then we have that g;(x;) = O forall j # i and g;(x;) # 0. Thus there is some constant ¢;
such that ¢;g;(x;) = y;. Adding them all up gives the Lagrange Interpolation Theorem.

Example 6.2.1. In Figure 6.1, we started with the set of points
(O’ 1)» (1’ _2), (25 0)7 (3’ 1)
Then we define the polynomials

g0:= - D -2)(x-3)
g1 :=—x(x-2)(x-3)

g :=0

g3 = %x(x -1(x-2),

which we have already rescaled so that go(0) = 1, g1 (1) = -2, g2(2) = 0,and g3(3) = 1.
Adding them up gives the polynomial

f(x) = é(x -Dx-2)(x-3)—x(x—=2)(x—-3) + éx(x -1(x=-2),

which we have plotted.

Theorem 6.2.2 (Lagrange’s Interpolation Theorem). For any choice of n + 1 points
(x, y;) such that the x; are pairwise distinct, there is a unique polynomial f(x) of degree
at most n such that

f(xi) =yi

forall0 <i<n.

Proof. For any 0 < i < n, define the basis polynomial for Lagrange interpolation g; (x)

by
X =X
gi(x) = | |x__ L.
j=0 11T
J#

Then g;(x) is a polynomial of degree n, whose n roots are the points x; for j # i.
Furthermore, we have defined g; in such a way that g;(x;) = 1. Now we define the
polynomial f(x) of degree n by

£ =) vigi(x).
i=0

Then f(x;) = y; since g;(x;) = 0 for j # i and g;(x;) = 1. Thus f satisfies the criteria
of the theorem.
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To see that the polynomial f(x) is the unique polynomial of degree at most n that
satisfies f(x;) = y;, consider a second polynomial g(x) of degree at most n that satisfies
the same requirement. Then the polynomial

f(x) —g(x)
is a polynomial of degree at most n with n + 1 roots. By virtue of Corollary 6.1.6 this is
only possible if f(x) — g(x) is the zero polynomial, that is, if f(x) = g(x). O

Corollary 6.2.3. Any polynomial f(x) of degree n is uniquely determined by any n + 1
of its values. In particular, it is uniquely determined by the values

fQ0),..., f(n).

Even though the basis polynomials of Lagrange’s Interpolation Theorem don’t always
have integer coeflicients, we can use Lagrange’s Interpolation Theorem to show that for
any polynomial f with real coefficients, if

fQ0),.... f(n)
are integers, then f(x) is an integer for every integer x.

Definition 6.2.4. A polynomial f(x) with real coefficients is said to be integer valued if
f(x) is an integer for every integer x.

A simple example of an integer valued polynomial that doesn’t have integer coeffi-
cients is the polynomial
x(x+1)
2 b

which returns the triangular numbers.
Lagrange’s Interpolation Theorem establishes a polynomial f(x) as a linear combi-
nation of the basis polynomials, thus obtaining

n

D Fl)gi).

k=0

However, we can turn this perspective around. Each value f(x) can be written as a
linear combination of the values f(k) for 0 < k < n. This observation is important
enough that we establish it in its own lemma, which is a direct corollary of Lagrange’s
Interpolation Theorem.

Lemma 6.2.5. Consider a polynomial f(x). Then each value f(x) can be written as a
linear combination of the values f(0), ..., f(n), i.e., there are coefficients a;(x) for
each 0 < i < n depending on x such that

n

F@) = @) ).

i=0

Proof. The coefficients ay (x) are given by the basis polynomials g (x). O

55



Equipped with this change of perspective, we can prove that a polynomial of degree
n is integer values as soon as its values f(0), ..., f(n) are integers.

Theorem 6.2.6. Consider a polynomial f(x) of degree n with real coefficients. If the
values

f(0),.... f(n)

are integers, then f(x) is an integer for every integer x.

Proof. The basis polynomials of f are

We can express g;(x) using binomial coefficients as

x\(x—-i-1
ao=()(3)

which is an integer for every integer x. Therefore it follows by Lagrange’s Interpolation
Theorem that every value f(x) can be written as an integer linear combination of the
integers f(0), ..., f(n), which proves the theorem. O

Corollary 6.2.7. Two polynomials f(x) and g(x) with integer coefficients have equal
coefficients if and only if their values are equal.

Proof. The forward direction, which asserts that if f(x) and g(x) have equal coefficients
then they define the same function, is immediate. For the converse, assume that
f(x) = g(x) for every x. Then the polynomial f(x) — g(x) must be the 0 polynomial,
since any other polynomial has a degree and a polynomial of degree n has at most n
roots by Corollary 6.1.6.

On the other hand, the polynomial f(x) — g(x) is defined as

JF(x) = g(x) = (an = bp)x" + - (a0 — bo),

where a; and b; are the coefficients of f and g, respectively, or taken to be O if there is no
such coeflicient. Thus it follows that a; — b; = 0 for all i, which proves that a; = b;. O

6.3 Fixed Divisors of Integer Polynomials

In the previous chapter, we have done a few exercises which asked us to show that
integers in certain polynomial forms satisfy a divisibility property. For example, we
showed that a® — a is always divisible by 6, and that a> — a is always divisible by 30.
We also showed that the product of any n consecutive integers is always divisible by n!.
In this section we will establish a vast generalization of these facts.

Definition 6.3.1. The fixed divisor of a function f : X — Z into the integers is the
greatest common divisor of all values of f, i.e.,

ged({f(x) [ x € X}).
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Lagrange’s Interpolation Theorem can be used to determine the greatest common
divisor of all the values of a polynomial, by examining only one more value than its
degree. This observation is due to Kurt Hensel, who was a student of Leopold Kronecker.

Theorem 6.3.2 (Hensel’s Fixed Divisor Theorem [Hen96]). Consider a polynomial
f(x) of degree n, with integer coefficients. Then the fixed divisor of f is the greatest
common divisor

gced(f(a),..., f(a+n))

of any n + 1 values of consecutive inputs of f.

Proof. First, we note that by translating the polynomial along the x-axis, which we
can do by considering the polynomial f(a), it suffices to show that for any polynomial
f(x) of degree n with integer coefficients, the fixed divisor of f is the greatest common
divisor of the integers

fQ0),.... f(n).

Now recall from Theorem 6.2.6 that the values f(x) are integer linear combinations of
the values f(0),..., f(n):

£ = F)gi).
i=0

It follows that
ged(f(0),..., f(n) | f(x).

Since the fixed divisor of f divides this greatest common divisor, this establishes the
theorem. O

Example 6.3.3. Consider the polynomial
f(x) =x"—x.

When 7 is even, then f is an even function, which means that f(—x) = f(x), and when
n is odd, then f is an odd function which means that f(—x) = —f(x). In either case,
this implies that the fixed divisor of x" — x is equal to the greatest common divisor of
the elements

f(0),.... f(m),

where m is the largest integer such that 2m < n + 1. In other words, to compute the fixed
divisor of x™ — x, we only have to inspect about half the amount of values of Hensel’s
Fixed Divisor Theorem. Furthermore, the polynomial f(x) = x" — x always satisfies
f(0) = 0and f(1) = 0, reducing the amount of cases even further. Thus, the fixed
divisor of x"* — x is

ged({f(k) |2 <k < (n+1)/2}).

1. For n = 3, the only number 2 < k < (n + 1)/2 is the number 2. The polynomial
f(x) = x> — x from Exercise 4.10 has the value

f(2) =6,

so the fixed divisor of x> — x is 6, which is 2 - 3.
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2. Forn = 5, the only two numbers 2 < k < (n + 1)/2 are the numbers 2 and 3. The
polynomial f(x) = x> — x from Exercise 4.11 has the values

f(2)=30 and  f(3) = 240.

Since 240 is divisible by 30 it follows that the fixed divisor of x> — x is 30, which
is2-3-5.

3. For n = 7, the only three numbers 2 < k < (n + 1)/2 are the numbers 2, 3, and 4.
The polynomial f(x) = x” — x has the values

f(2)=126 and  f(3) =2184.

Furthermore, using that 47 = (27)? we see that f(4) factors as (27 —2)(27 +2)
by the formula for the difference of squares. Therefore it follows that the fixed
divisor of f(x) is the greatest common divisor of f(2), f(3), and f(4), is just
the greatest common divisor of f(2) and f(3), which is

gcd(126,2184) =42=2-3-17.
We will generalize these examples in Theorem 13.4.6.

Exercises

6.1 Show that x'3 — x has fixed divisor

2-3.5-7-13.
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Chapter 7

Pythagorean Triples

7.1 The Pythagorean Theorem

Recall that a right triangle is a triangle in which one of the angles is a right angle, i.e.,
it is exactly 90°. The Pythagorean theorem relates the lengths of the sides of a right
triangle to the length of its hypotenuse. There are many ways to prove this theorem. We
will present the Chinese proof, Euclid’s proof, and the trigonometric proof of Ne’Kiya
Jackson and Calcea Johnson, who made headlines in 2023 as high school students with
their remarkable discovery of a trigonometric proof [Gua23].

Theorem 7.1.1. Consider a right triangle with side lengths a and b, and a hypotenuse

of length c. Then
2

a’+b* =%
The Chinese proof. Consider a square with side lengths a + b, and include four right
triangles with side lengths a and b in the square, so that their right angles coincide with
the four right angles of the square.

The area of the square is (a + b)%. On the other hand, the area of each triangle is ab /2.
Combined with the area of the inner square, whose sides are the hypotenuses of the four
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triangles, we obtain that
2 2 ab 2
(a+b) =c +47 =c” + 2ab.
Since (a + b)? = a® + 2ab + b?, we find that a* + b = 2. o

Euclid’s proof. Consider a right triangle ACB with hypotenuse AB, and draw a line
from C through AB at a right angle. The intersection point is called M.

C

Let x be the length of the line segment AM, and let y be the length of the line segment
BM, so that x + y = c. The line CM divides the triangle ACB into two triangles CM A
and CM B, both of which are similar to the original triangle ACB. Thus, the ratio a : ¢
is the same as the ratio y : a, and the ratio b : c is the same as the ratio x : b. This gives

us the equalities

a*=cy and b* = cx.

Since x + y = ¢, we find that a® + b? = 2. o

Our third proof and final proof in this section, which is due to Ne’Kiya Jackson and
Calcea Johnson, is remarkable because it makes essential use of trigonometric functions
sine and cosine and the addition law, which can be derived trigonometrically, rather
than on calculations involving areas of shapes. Besides its use of trigonometry, it is
remarkable because Ne’Kiya Jackson and Calcea Johnson were still in high school when
they found their proof, and it stands out for its inventive creativity.

Recall that the sine and cosine functions are
defined to be the lengths of the vertical and hori- B
zontal sides of a right triangle, as indicated in the
diagram on the side.

This means that if ABC is a right triangle 1 sin(8)
with side BC of length a, side AC of length b,
hypotenuse AB of length ¢, and angle 6 := Z/CAB, 0
then we have A cos(8) C

b
sin(0) = % and cos(0) = =
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In the proof of the Pythagorean theorem, we will make use of the addition formulas for
sine and cosine:

sin(6 + ¢) = sin(@) cos(p) + cos(H) sin(¢p)
cos(6 + ¢) = sin(0) sin(¢) — cos(0) cos(¢).

In particular, sin(26) = 2sin(6) cos(6), and cos(26) = sin>(#) — cos?(6). These laws
can be derived geometrically if 6 + ¢ is an acute angle, i.e., if it is strictly less than 90°,
see Exercise 7.2.

The Jackson—Johnson proof [JJ24]. Consider a right triangle ABC with the right angle
at C, and label the sides a = BC, b = AC, and ¢ = AB so c is the hypotenuse.

In the special case where ABC is isosceles, i.e., if a = b, the hypotenuse is the
diagonal of an a-by-a square, which gives us that ¢> = 2a®. Hence, we may assume that
ABC is nonisosceles.

Without loss of generality, we will assume that a < b, i.e., that BC is the shorter side.
We reflect the triangle along the longer side AC, as indicated in the diagram below:

B a (Cc a B’

Observe that the angle 6 := ZBAC is strictly less than 45°, so that the angle
260 = /BAB’ is still an acute angle.

Using this combined triangle, we draw a line from B perpendicular to the line AB,
and we extend the line AB’ until they meet in an intersection point, which we call
D. This construction yields a new right triangle ABD with the right angle at B, as in
Figure 7.1.

We will now subdivide the triangle BD B’ by first dropping a line down from B’ at a
right angle from the line BB’, creating a new right triangle BEB’. Since this triangle
also has an angle 6, it is similar to the original triangle ABC. Its sides have lengths 2a
and 2a%/b.

We continue subdividing the triangle BD B’ into ever smaller right triangles, as
indicated in the figure. The successive triangles in this sequence are all right triangles
with an angle 0, so they are all similar. Corresponding sides in these successive triangles
have a ratio of a/b. The hypotenuses of these triangles therefore have length

2 ()
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B B’

Figure 7.1: The recursive subdivision of the triangle BDB’.

This allows us to calculate the length of the side B’ D via the formula for the geometric
series, which we proved in Theorem 1.1.2:

- -~ 2¢ (2)? 2ca?
B/D _ 2C(g)2k+2:26(g)2 (E)Qk: b _ .
Now we can find two expressions for the length of the line AD. First, it consists of
the lines AB’ and B’D, so it is of length ¢ + |B’D|, which we calculated above. On
the other hand, by trigonometry we have that ¢/|AD| = cos(26), which gives us that
|AD| = c¢/cos(26). Since both expressions give the length of the line AD, both involving
a factor of ¢ which we can factor out, we obtain the following equation:
24> 1

1+ = .
b2 —a?  cos(20)

Furthermore, the addition formula for cosines gives us that cos(26) = sin’(6) — cos?(6).
Since sin() = ? and cos(6) = <, we find that

24> B c?
b2 —ag2 B2 —g2’

Rearranging this equation gives us that (b> — a?) + 2a> = ¢?, which yields

1+

a’ + b* = . O

7.2 Euclid’s Parametrization of the Pythagorean Triples
Our goal in this section is to describe all the solutions of the quadratic Diophantine
equation

2y =2
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Figure 7.2: The Babylonian tablet Plimpton 322, listing Pythagorean triples.

where z is a nonzero integer. By the Pythagorean Theorem, any such triple (x, y, z)
describes the lengths of the sides and hypotenuse of a right triangle. Such a triple is
therefore called a Pythagorean triple. Notice that if (x,y, z) is a Pythagorean triple,
then so is (kx, ky, kz), and their corresponding triangles are of the same shape. Such
Pythagorean triples are therefore called similar, and we are interested in the Pythagorean
triples up to similarity.

The trivial solutions are (0, 1, 1) and (1,0, 1).
The simplest nontrivial solution is the famous
equation

P4 =52 > 3

The triangle with side lengths 3 and 4 and a
hypotenuse of length 5 is sometimes called the
Egyptian triangle, since it is believed that the 4
ancient Egyptians used this triangle for practical applications. The oldest surviving
table of Pythagorean triples was created by the Babylonians, in what is now known as
the tablet Plimpton 322. This clay tablet, which is estimated to date from 1800 BCE,
contains a mathematical table written in cuneiform script, where each row describes a
Pythagorean triple in sexagesimal notation, i.e., base 60.

Some further Pythagorean triples include

(5,12,13),  (21,20,29), and  (15,8,17).

Fibonacci devised in his book Liber Quadratorum (The Book of Squares) [Fib25] a
clever way to quickly show that there are infinitely many Pythagorean triples. If an odd
square a? is the nth odd number, i.e., if a = 2n + 1, then there are positive integers b
and c such that

n—1 n
b2 = Z(Zi +1), and %= Z(zi +1)
i=0 i=0
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by Exercise 1.2. For this choice of a, b, and ¢, we have

a’ +b* =2
Proposition 7.2.1. There are infinitely many Pythagorean triples (a, b, ¢) such that
c=b+1

Note that while Fibonacci used the sum of odd numbers to find a triple (a, b, ¢) of
integers such that a®> + b = ¢?, these Fibonacci triples follow the pattern

2b+1)+b>=(+1)>2

Here we immediately see that if 25 + 1 is a square number a?, and indeed any odd square
is of this form, then we obtain a Pythagorean triple of the form (a, b, b + 1). Rewriting
a =2k + 1, we see that Fibonacci’s Pythagorean triples are of the form

(2k + 1, 2k* + 2k, 2k* + 2k + 1).

The Pythagorean triples (a, b, ¢) generated by Fibonacci’s method always satisfy
¢ = b + 1. However, we have already seen that (21, 20, 29) is a Pythagorean triple that
is not of this form. Therefore we see that, even though Fibonacci’s method can be used
to see that there are infinitely many Pythagorean triples, it does not generate all of them.

In the remainder of this section we will derive the classic formula that describes all
the Pythagorean triples. The method leading to this formula was described by Euclid in
Book X, Proposition 29 and Book 6, Proposition 21 of the Elements.

Definition 7.2.2. A primitive Pythagorean triple is a triple (x, y, z) satisfying

such that ged(x,y) = 1.

Example 7.2.3. All the Pythagorean triples generated by Fibonacci’s method are
primitive, since gcd(2b + 1,b) = 1.

Lemma7.2.4. Forany Pythagorean triple (x,y, z) there is a unique primitive Pythagorean
triple (x’,y’, z’) consisting of positive integers for which there is an integer k such that
(kx', ky', kZ') = (x,9,2).

Proof. Given a Pythagorean triple (x, y, z), let k := ged(x, y). Since k | x and k | y, it
follows from the equation x> + y> = z? that k | z. Thus, we define

x'i=x/k, Y i=ylk, and ' :i=z/k.

Then x” and y’ are relatively prime, and we have

2 2 2
xX° + e
le + y12 — Yy _ 7”2

k2 k2

The triple (x,y’, 7") is therefore a primitive Pythagorean triple such that

(kx', ky', kz') = (x,,2).
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For uniqueness, suppose that (x”, y”, z’") is an other such primitive Pythagorean triple,
satisfying (Ix",1y"”,17") = (x,y,z). Since ged(x”,y"") = 1, it follows that

k = ged(x, y) = ged(Ix”, 1y") = 1

Furthermore, since at least one of x or y is nonzero, it follows both k and [ are nonzero.
Thus we get x” = x”’ from the equation kx” = kx”’, and we get y’ = y” from the equation
ky" = ky”. We conclude that (x,y’,z") = (x”,y"”,7"). m]

By the previous lemma we can restrict our attention to primitive Pythagorean triples.
Next, we do a parity analysis of the components of a primitive Pythagorean triple.

Lemma 7.2.5. Consider a primitive Pythagorean triple (x, v, z). Then exactly one of x
and y is even, the other is odd, and z is always odd.

Proof. Since (x,y, z) is a primitive Pythagorean triple, it is clearly impossible for both
x and y to be even. It is also impossible for both of them to be odd, since in that case we
would have

Z22x2+y252 (mOd 4)

However, every square is either congruent to O or to 1 modulo 4, so this is impossible.
Thus, one of x and y is even and the other is odd. This gives us that z? is odd, which
is only possible if z is odd. O

By the previous lemma we may assume, without loss of generality, that in a primitive
Pythagorean triple (x, y, z), the integer x is odd and the integer y is even.

Next, we note that x> = z> — y2, which factors by the formula for the difference of
squares as

= (z-y)(z+Yy).

In the following lemma we will show that for any primitive Pythagorean triple (x, y, z),
the factors z — y and z + y of x? are relatively prime. This immediately implies that they
are both squares, which is the key to Euclid’s parametrization of the Pythagorean triples.

Lemma 7.2.6. Suppose that (x,y,z) is a primitive Pythagorean triple in which y is
even. Then the integers 7 — y and z + y are relatively prime, and they are both squares.

Proof. Consider a common divisor d of z — y and z + y. Then we have
d| (z+y)—(z-y) =2y, and dl(z+y)+(z—y) =2z

The integer d is therefore a common divisor of 2y and 2z. Since y and z are relatively
prime, it follows that d | 2.

Furthermore, we note that d | (z — y)(z + y) = z2 — y* = x?. Since x is odd, it
follows that d must be odd, and therefore we conclude that d = 1. This shows that z + y
and z — y are relatively prime.

Now we note again that (z — y)(z + y) = x2. Since z — y and z + y are both factors
of x2 and they are relatively prime, it follows that they must both be squares. O
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Theorem 7.2.7 (The Pythagorean Triples Theorem). For every primitive Pythagorean
triple (x,y,z) in which y is even there is a unique pair (s,t) of relatively prime odd
integers with 1 <t < s, such that
2_ .2 2, .2
§e =t T+t

) d =
5 an c >
Proof. First, we show that for any two odd integers 0 < ¢ < s that are relatively prime,
the integers

X = st, y=

5% — 1 52 + 1
7 and z= >
form a primitive Pythagorean triple. It is easy to see that they form a Pythagorean triple.
We simply calculate

X = st, y=

by (2= st 4222+ 14 (2 +1%)?
N = .
4 4 4

To see that sz and (s> — ¢2)/2 are relatively prime, consider a common prime divisor p
of st and (5% — %) /2. Since p | st, it follows that either p | s or p | t. Since p | s> — 1>
and p divides one of the integers s and ¢, it follows that p also divides the other one.
However, s and ¢ have no common prime factors, so we have reached a contradiction.
Thus we conclude that there are no common prime factors of st and (s> — ¢2)/2, and
hence they must be relatively prime. This proves the claim that (x, y, z) is a primitive
Pythagorean triple.

Now consider a primitive Pythagorean triple (x,y,z) in which y is even. By
Lemma 7.2.6 it follows that z — y and z + y are relatively prime, and are both squares.
Thus there are nonnegative integers s and # with ¢ < s such that

52=z+y, and tr"=z-y.

Since z is odd and y is even, it follows that both s and ¢ are odd. Furthermore, since
Z +y and z — y are relatively prime, it follows that s and ¢ are relatively prime.
Then we see by a direct calculation that

sz—t2 52+t2
2 7 2

X = st, y =

7.3 Rational Points on the Unit Circle

7.4 The Tree of Primitive Pythagorean Triples

The set of all primitive Pythagorean triples has the structure of a rooted ternary tree.
This structure was first discovered by Berggren in 1934 [Ber34].

1 -2 2 1 2 2 -1 2 2
A=2 -1 2], B=|2 1 2|, and C=[-2 1 2
2 -2 3 2 2 3 -2 2 3
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Figure 7.3: For any rational point (x, y) on the unit circle apart from (0, 1) and («1,0), draw a
straight line through it from the outer corner of its quadrant to find a new rational point (x’, y’) on
the unit circle. The common denominator of (x’, y”) is strictly smaller than that of (x, y), so that

this process eventually terminates at (0, £1) or (£1,0).

Exercises
7.1 Bhaskara’s proof of the Pythagorean Theorem. Use the following diagram to give

a proof of the Pythagorean Theorem:

7.2
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7.3 The Brahmagupta—Fibonacci identity. Show that
(a* + b*)(c? + d*) = (ac + bd)? + (ad T bc)?.

Conclude that if m and n are two integers that can be written as the sum of two
squares, then their product mn can also be written as the sum of two squares.
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Chapter 8

Infinite Descent

8.1 The Method of Infinite Descent

The method of infinite descent was invented by Fermat. He used this method effectively
to solve various problems, including that there are no solutions to x* + y* = z* in the
positive integers, and that the area of a right triangle is not a perfect square. The method
of infinite descent is used to show that certain properties or identities are impossible, by
showing that if they do hold then an infinitely descending sequence of natural numbers
can be constructed. The following theorem shows that there is no such sequence.

Proposition 8.1.1. There is no infinite descending sequence
apg>ay>day> -

of natural numbers.

Proof. Suppose, by way of contradiction, that there is such a sequence
ap>ayp >ay> - .

Then the set
A:={ap,a1,az,...}

is a nonempty subset of the natural numbers, and by the well-ordering principle of the
natural numbers it follows that this set has a least element. However, all the elements
in A are of the form a, for some natural number N, and none of these elements are
minimal, since we have assumed that a,, > a,+;. This contradiction shows that our
assumption that there exists an infinite descending sequence must be false, and thus
there is no such sequence. O

The previous proposition leads to Fermat’s method of infinite descent. Fermat
observed that if an assumption H leads to an infinite descending sequence, then the
assumption H must be false. We will illustrate Fermat’s method with the following
theorem:
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Theorem 8.1.2. If a natural number n is not a perfect square, then its square root \n is
irrational.

Proof. We will prove the theorem by deriving a contradiction under the assumption that
there is a rational number 7 such that

a2

b2
This equation can be written in the form a? = nb?, where n is not a perfect square. In
other words, our goal is to show that the set

A :={(a,b) | a®> = nb*}

=n.

is empty. We will do so by constructing a function (a, b) + (a’, b’) on the set A, so
that a > a’. If the set A was nonempty, then we would obtain an infinite descending
sequence of natural numbers by iterating this function, thus reaching a contradiction by
Proposition 8.1.1.

Consider a and b such that a®> = nb?. Since n is not a perfect square, it has a prime

divisor p such that
n= p2k+1 m
for an odd number 2k + 1 and a number m not divisible by p. It follows that

PP | g2,
By the pigeonhole principle it follows that p**! | @, which also implies that a is divisible
by p. However, this implies the slightly stronger divisibility relation

P2ED | 2,

However, n is not divisible by p2**1) so it follows that b is divisible by p. Thus, we
have shown that both a and b are divisible by p. We may therefore define

a = — and b = —.
P P

Since multiplication by p? is injective we find that a’> = nb’%, completing the proof. O

In the previous proof we introduced a set A of which the elements were pairs (a, b)
of natural numbers satisfying a> = nb?, and we defined a function f : A — A in order
to show that A is empty. In the following theorem we state the method of infinite descent
using a generalization of this setup.

Theorem 8.1.3 (Method of Infinite Descent). Consider a set A equipped with a function
f:A— Aandafunction h: A — N. If h(f(a)) < h(a) for all a, then A is empty.

Proof. Suppose, by way of contradiction, that the set A is inhabited by an elementa € A.
By iterating f, we define a sequence of elements a; by

ap:=a
aiv1 = f(a;).

Then we have h(ag) > h(a;) > h(ap) > -- -, which is an infinite descending sequence

of natural numbers. Thus, the assumption that A is inhabited was false. m]
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8.2 The Unsolvability of x* + y* = z*

Theorem 8.2.1. There are no three positive integers x, y, and z for which the equation

holds.

Proof. Consider the set
A={(x,y.2) € Zog | x* +y* = 27}

with h(x, y, z) := z. We will construct a function f : A — A such that 2(f(x,y,2)) <
h(x,y,z) for every (x,y,7) € A.

First, we notice that if (x, y, z) is a triple of positive integers satisfying the equation
x* +y* = 22, then (x?, y?, ) is a Pythagorean triple. We may assume that x and y are
relatively prime, since we can always divide out any common factors. Furthermore, we
may assume that x is even, so that

x2 = 2st
Voo
7= +1,

where s and ¢ are relatively prime.

The key observation is now in the second equation: We obtain a new Pythagorean
triple y% + ¢> = s2, allowing us to apply the parametrization of Pythagorean triples once
more. Since y was assumed to be odd it follows that 7 is even, so we find relatively prime
integers u and v such that

t =2uv
y:uz—vz
s=u’+v2.

Now it follows that x? = 4uv(u? + v?). We claim that the numbers uv and u? + v? are
relatively prime. To see this, note that any prime divisor p of uv must be a prime divisor
of u or v. On the other hand, given that p is a prime divisor of one of u and v, if p were
also a prime divisor of u* + v2, then it would follow that p is a prime divisor of both u
and v. This contradicts the assumption that # and v are relatively prime.

Since uv and u? + v? are relatively prime, the fact that 4uv(u” + v?) is a square
implies that both v and u? + v? are squares. Given that u and v are relatively prime,
this implies that u and v are squares, i.e., that there are integers a and b such that u = a>

and v = b2. Thus, it follows that
> +v:=a*+p*

is a square, say c>. We have therefore shown that any triple of positive integers x, y, and
z such that x* + y* = 72 we can construct positive integers a, b, and ¢ such that

at+b*=¢?
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This finishes the construction of the function f : A — A. Furthermore, the strict
inequality ¢? = s < s2 + 1> = 7% shows that A(f(x,y,z)) < h(x,y,z), so we conclude
by the method of infinite descent that the set A must be empty. O

Corollary 8.2.2. There is no solution to the equation
x4n + y4n — Z4n,
where x, y, and z are positive integers.
Proof. Given such a solution, seta = x", b = y", and ¢ = 72" Then we have
a* +b* =2,

which is impossible. O

8.3 Vieta Jumping
Consider a polynomial with roots ay, az, and a3, i.e., the polynomial
(x —a)(x —az)(x - a3).
If we expand this polynomial, it takes the form
X2 = (ay + ay + a3)x*> + (ayay + azas + aza))x — ayaas.

Francois Viete recognized in the 16th century that this yields a relation between the
coeflicients and the roots of a monic polynomial, i.e., a polynomial with leading
coefficient 1. In the case of a monic polynomial X3 + cax? + ¢1x + ¢ with roots ay, as,
and as, we get

Cc —(a1 + aj +a3)

c1 =ajay +ajasz +aas
co = —dajazas.
More generally, the coefficients of the polynomial

Jx)=&-a)) - (x—an)

are of the form

er(ay,...,ay) = Z aiy Ay * -+ iy .

1<ij<ip<--+<ip<n

Notice that these coefficients are themselves polynomials in the variables ay, ..., a,.
These polynomials are called the elementary symmetric polynomials. For example, for
n =3 we have

fx) = - (ay +ay + ag)x2 + (ajay + ayaz + aas)x —ajazas.

Vieta jumping is a modern problem-solving technique that became popular in
international contest problems.
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Exercises

8.1 Use the method of infinite descent to show that if @ and b are relatively prime and
the product ab is a square, then both a and b are squares.
8.2 Let x and y be positive integers satisfying the equation

xz—xy+y2: 1.

Prove thatx =y = 1.
8.3 Show that if x and y are positive integers such that xy divides x> + y> + 1, then

2,2
x+y +1
hyrel o
Xy
8.4 Let x, v, and z be positive integers such that xy + yz + zx divides x> + y + z2.
Prove that
x2+y24 2
Xy +yz+zx

is a perfect square.
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Chapter 9

Congruences

9.1 The Congruence Relations

Carl Friedrich Gauss introduced the congruence relations in his monumental work,
Disquisitiones Arithmeticae [Gau86]. The congruence relations allowed him to system-
atically simplify the study of the integers. Prior to Gauss’s invention, number theory
was pursued with a variety of ad hoc techniques that often made proofs less transparent
than they could be. His key insight was that many properties of the integers depend not
on their exact size, but rather on their remainder when divided by a fixed number.

Definition 9.1.1. We say that a is congruent to b modulo c, written
a=b (mod ¢),
if ¢ | @ — b. The number c is called the modulus of the congruence.

Example 9.1.2. We have
17 =2 (mod 3)

because 17 — 2 = 15 and 15 is divisible by 3. Similarly, we have
28 =3 (mod 5)
because 28 — 3 = 25 and 25 is divisible by 5.
Example 9.1.3. The 24-hour clock is widely used in Europe, Asia, and Africa, while in
North and South America, the 12-hour clock is more common. For instance, what is

written as 19:05 in the 24-hour format corresponds to 7:05pm in the 12-hour format.
The numbers 19 and 7 are congruent modulo 12 because

19 =7 (mod 12).
This follows from the fact that 19 — 7 = 12 is a multiple of 12.
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Remark 9.1.4. Congruence modulo 0 is equality, because 0 | b — a holds if and only if
b — a = 0. Congruence modulo 1, on the other hand, is true for any two integers a and
b, because 1 | b — a is always true.

Also, we note that « = b (mod c) holds if and only if a = b (mod —c) holds. For
this reason, the modulus is usually taken to be a natural number 7.

In the following lemma we establish that a and b are congruent modulo # if and only
if they have the same remainder after division by n.

Lemma 9.1.5. Consider integers a and b, and a positive natural number n, and suppose
thata = gn+r and b = pn + s, where 0 < r,s < n. Then the congruence

a=b (mod n)
holds if and only if r = s.

Proof. By definition, the congruence a = b (mod n) holds if and only if n | a — b.
Since a = gn+rand b = pn + s, where 0 < r, s < n we see that n | a — b holds if and
onlyifn | (gqn+r)— (pn+s). Rewriting the expressing (gn +r) — (pn + s), we see that

n|(gn+r)y—(pn+s) ifandonlyif n|(g—p)n+(r—s).

Now we note that the number (¢ — p)n is divisible by n, so we find thatn | (g—p)n+(r—s)
holds if and only if n | r — s. However, the number r — s satisfies the strict inequalities

-n<r-s<an,

and the only integer in this range that is divisible by # is the integer 0. Thus we see that
n | r — s holds if and only if r = s, completing the chain of logical equivalences. O

Example 9.1.6. Recall from Theorem 3.3.1 that any number n can be written as

-1

n= ) d;b'
2,4
i=0

in base b > 1. Given that n is written in this way, we have n = dy (mod b). Indeed, the
digit dy was constructed using the Euclidean Division Theorem as the remainder of n
after division by b. For example, the congruence 37 =7 (mod 10) holds.

An important property of the congruence relations, which makes them so useful in
the study of the integers, is that they are compatible with the arithmetic operations of
addition and multiplication.

Proposition 9.1.7. Suppose that a = a’ (mod n) and b = b’ (mod n). Then the
following congruences hold:

a+b=ad +b" (mod n),
ab=a’'b’ (mod n).
Consequently, for any integers x and y,

ax+by=dx+b'y (mod n).
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Proof. By assumption we have that n | a —a’ and n | b — b’. Thus it follows that n
divides the sum

nl(a-—a)+b-b)=(a+b)-(a" +b),

which shows thata + b = a’ + b’ (mod n). Moreover, n divides any linear combination
of a —a’ and b — b’, so in particular we have

nl(a-ad)b+d(b-b)=ab-a'b+a'b-a'b =ab-a'b’.
This shows that ab = a’b’ (mod n). O

One way of thinking about the following corollary, is that every polynomial is
periodic modulo n, i.e., every polynomial repeats itself modulo n after every n steps.

Corollary 9.1.8. Ifx =y (mod n), then we have

-1 -1

Zakxk = Zakyk (mod n).

k=0 k=0

The power of modular arithmetic is effectively demonstrated with divisibility tests.
Consider a number n written in base 10 as

n:Hd 10*.
D d

k=0

Then n is divisible by 9 if and only if the sum of its digits is divisible by 9. Indeed, since
10 =1 (mod 9), it follows that

-1 -1
demk = delk (mod 9),
k=0 k=0

and we recognize that the right-hand side is just the sum of the digits of n. For example,
the number 34, 524 is divisible by 9 because 3 + 4 + 5 + 2 + 4 = 18 and the number 18
is divisible by 9 because 1 + 8 = 9.

Remark 9.1.9. One might wonder whether congruence relations are also preserved by
operations like the greatest common divisor. However, this is not the case. For a counter
example, consider the congruences 6 = 16 (mod 10) and 15 = 25 (mod 10). The
greatest common divisor of 6 and 15 is 3, while the greatest common divisor of 16 and
25 is 1. Thus we see that, even though 6 = 16 and 15 = 25 modulo 10, we have

gcd(6,15) # ged(16,25) (mod 10).

9.2 Equivalence Relations

The congruence relations are examples of equivalence relations, which we will now
define.
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Definition 9.2.1. An equivalence relation on a set A is a binary relation ~ satisfying the
following three conditions:

1. Reflexivity. For any element a € A, we have

a~da.

2. Symmetry. For any two elements a, b € A, we have

(a ~Db)= (b~ a).

3. Transitivity. For any three elements a, b, c € A, we have

(a~b)AN(b~c)= (a~c).

Thus, where the ordering relation of a poset is reflexive, antisymmetric and transitive,
an equivalence relation is reflexive, symmetric and transitive. The standard example
of an equivalence relation is equality itself, which is indeed reflexive, symmetric and
transitive.

Proposition 9.2.2. For any natural number n, the congruence relation = modulo n is
an equivalence relation.

Proof. To see that the congruence relation modulo » is reflexive, note thata —a = 0
and any number divides 0. Thus the congruence a = a (mod n) always holds. To
see that the congruence relation modulo n is symmetric, note that if n | a — b then
n| —(a—>b) = b — a. This shows that a = b (mod n) implies b = a (mod n). To
see that the congruence relation modulo 7 is transitive, assume that n | a — b and that
n | b — c. Then it follows that

nl(a=-b)+(b-c)=a-c,
showing that a = ¢ (mod n). O

Equivalence relations come about in many forms, and one can get quite creative in
defining them. We illustrate the generality of equivalence relations with some examples.

Example 9.2.3. Consider a prime number p. Every nonzero integer a can be written in
the form pXu where u is not divisible by p. The number u is called the p-core or the
p-free part of a. The relation a ~ b defined by the condition that a and b have the same
p-core is an equivalence relation.

The equivalence relation of the previous example is an instance of a general class of
equivalence relations. Given a function f : A — B, there is an equivalence relation ~ ¢
on the set A, given by

X~fy if and only if fx) =f().

This relation is also called the kernel of f. In the previous example, the function
f 1 Z+9 — Zyo is the function that sends a to the unique integer u not divisible by p for
which there is a valuation k such that p*u = a.
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Proposition 9.2.4. For any function f : A — B, the relation ~¢ is an equivalence
relation.

Proof. To see that any relation of the form ~ is an equivalence relation, we need to
check reflexivity, symmetry, and transitivity. Note that we have reflexivity because
f(x) = f(x) for any x € A. The relation ~ is symmetric because f(y) = f(x) holds
whenever f(x) = f(y) holds. Finally, the relation ~ f is transitive because f(x) = f(z)
holds whenever both f(x) = f(y) and f(y) = f(z) hold. O

Example 9.2.5. Recall from Exercise 3.2 that Zeckendorf’s representation theorem
established that any natural number n can be written uniquely as a sum

le—1
n= Z dn 1 Fre2
k=0

of nonconsecutive Fibonacci numbers with index at least 2. Now we define an equivalence
relation ~f by declaring that two natural numbers m and n are equivalent, if one can be
obtained from the other by shifting their Zeckendorf representation. More precisely, we
define m ~f n to hold if and only if there exist natural numbers s and ¢ such that

L1 -1
Z Ak Fierss2 = Z dp ik Frcsre2-
k=0 %=0

For example, the number 17 is written (100101)x in the Zeckendorf notation, and its
shifts are the numbers (1001010)r = 28, (10010100)r = 45, and so on. Thus we have

17 ~p 28 ~p 45 ~p -+

The equivalence relation of the previous example is an instance of another general
way of constructing equivalence relations. Given an operation 7 : A — A, define the
equivalence relation ~7 by declaring that

X~7Yy ifandonly if (5 ey T (x) =T ().

In technical terminology, the set A equipped with the operation 7 form a dynamical
system, and when x ~7 y holds we say that x and y have the same eventual orbit. The
operation 7 in the equivalence relation ~f of the previous example is the shift operation
on the Zeckendorf representation, which simply appends a digit 0.

Proposition 9.2.6. For any operation T on a set A, the relation ~7 is an equivalence
relation.

Proof. To see that the relation ~7 is indeed an equivalence relation, we need to verify
reflexivity, symmetry, and transitivity.

The relation ~7 is reflexive, because 7°(x) = x = T%(x), and the relation ~7 is
symmetric because the condition that 3, ;e (7° (x) = T (y)) is symmetric in x and y.
To see that ~ is transitive, consider s, £, u, v such that 75 (x) = T?(y) and T"(y) = TV (z).
Then we have

T (x) =TT (x)) = T*(T"(y)) = T"(T"(y)) = T"(T"(2)) = T"""(2),

showing that x ~7 z. O
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Perhaps one of the most famous dynamical systems on the set of positive integers is
due to Collatz, whose function 7 is defined by

n/2 if n is even
T(n) := :
3n+1 otherwise.
For example, starting at the number 3, repeated application of the Collatz function
produces the sequence:

3,10,5,16,8,4,2,1,4,---.
Once the sequence reaches 1, it enters the cycle
l,4-2-1H .-

The famous and elusive Collatz conjecture states that for every positive integer n, the
sequence
n, T(n), T*(n), ...

eventually reaches the value 1. In our notation, the Collatz conjecture asserts that n ~7 1
for every positive natural number 7.

9.3 Equivalence Classes and Residue Systems

Definition 9.3.1. Consider an equivalence relation ~ on a set A. Then the equivalence
class of an element a € A is the set

[a] :={x € A]|a~x}.

Example 9.3.2. In the case where the equivalence relation under consideration is a
congruence relation with modulus 7, then the equivalence classes are called congruence
classes. For any positive integer n, there are exactly n distinct congruence classes
modulo n, corresponding to the n possible residues 0 < r < n after division by n with
remainder.

The congruence class modulo 2 of any even integer consists precisely of all the even
integers, and the congruence class of any odd integer consists precisely of all the odd
integers.

To see this, suppose that a is an even integer. Then @ = x (mod 2) holds if and only
if @ and x have the same remainder after division by 2. Since the remainder of a divided
by 2 is 0, it follows that a is congruent to x precisely when x is divisible by 2, i.e., when
x is even. This shows that for an even integer a, the congruence class

[a] ={x € A]la=x (mod 2)}

is the set of even numbers.

Similarly, if @ is an odd integer, then a = x (mod 2) holds if and only if x is also
odd, because a = x (mod 2) holds if and only if x divided by 2 has remainder 1, which
means that x is odd.
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The equivalence classes of an equivalence relation ~ on a set A form a set
A/~:={U C A|JeaU = [al}

In other words, the set of equivalence classes of ~ is the set of subsets U C A such that
U = [a] for some a € A. The set A/~ is called the quotient of A by the equivalence
relation ~. Furthermore, the function

a—[a] :A— A/~

sending an element to its equivalence class is called the quotient map. We often write g
for the quotient map.

Proposition 9.3.3. For any equivalence relation ~ on a set A, the quotient map
a—la]:A— A/~
satisfies the following two conditions:

1. The quotient map is surjective. This means that for any equivalence class U C A
there is an element a € A such that U = [a].

2. The quotient map is eftective. This means that for any two elements a, b € A we
have
[a] =[] if and only if a~b.

Proof. The first claim is true by definition: the set of equivalence classes is defined as
{U CA | H(aGA)U = [a]},

i.e., it is defined as the set of subsets of A of the form [a] for some a € A.

For the second claim, let a, b € A. If we have the equality [a] = [/], then it follows
that b € [a], so that a ~ b. For the converse, if a ~ b holds, and x € A, then we have
a ~ x if and only if b ~ x by symmetry and transitivity of the relation ~. This shows
that x € [a] if and only if x € [b]. Thus, the subsets [a] and [b] contain the same
elements, so they must be the same. |

Definition 9.3.4. A complete residue system modulo n is a choice of exactly one element
from each congruence class modulo n. In other words, a complete residue system is a set

{ri,...,ru}

satisfying the condition that for every integer a there is a exactly one index 1 <i <n
such that
a=r; (mod n).

Example 9.3.5. For every nonnegative integer n, the set
{0,...,n—1}
forms a complete residue system modulo n. Similarly, any set
{a,...,a+n-1}

of n consecutive integers is a complete residue system modulo 7.
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Remark 9.3.6. Since complete residue systems contain a unique element in every
congruence class, there is for every complete residue system {rg, ..., r,_1} a bijection

N/(= (mod n)) = {ro,...,rn-1}.

9.4 Reduced Residue Systems

Before we introduce reduced residue systems, let us prove a lemma.

Lemma 9.4.1. Suppose that a = b (mod n). Then gcd(a,n) = ged(b,n). Conse-
quently, we have gcd(a,n) = 1 if and only if gcd(b,n) = 1.

Proof. By the assumption that a and b are congruent modulo 7, it follows that they
have the same remainder after division by n. Let r be this remainder. Since gcd(a,n) =
gcd(r, n) and ged(b, n) = ged(r, n) we see that

gcd(a, n) = ged(b, n).

This equality implies that the left hand side equals 1 if and only if the right hand side
equals 1. O

By the previous lemma, we can test whether an integer is relatively prime to n
by testing any element in its congruence class. This allows us to make the following
definition.

Definition 9.4.2. A reduced residue system modulo n is a set

{rl,...,rk}

of integers satisfying the condition that for every integer a relatively prime to n, there is
exactly one index 1 <i < k such that

a=r; (mod n).

Corollary 9.4.3. Any two reduced residue systems modulo n have the same size, for
which we write ¢(n). The function ¢ is called Euler’s totient function.

Proof. Reduced residue systems are choices of representatives of the congruence classes
in which all elements are relatively prime to n. Thus, the size of a reduced residue
system is always equal to the number of such congruence classes. O

Exercises

9.1 Describe a complete residue system modulo 7 consisting entirely of multiples of
3.

9.2 List all the numbers 0 < a < 6 such that a = x> (mod 6) for some x, and all the
numbers 0 < a < 8 such that a = x? (mod 8) for some x.

9.3 Compute ¢(n) forn=1,...,12.
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9.4 (a) Find integers k, a, and b such that
ka=kb (mod 4), but a#b (mod 4).

(b) Prove that if gcd(k, n) = d, then we have
. . n
ka = kb (mod n) if and only if a=b (mod 2) .

9.5 Show that the following are equivalent for any » > 0 and any integer a:
1. ged(a,n) = 1.
2. There exists an integer b such that ab = 1 (mod n).

9.6 Consider a prime number p and an integer a. Show that
a*=1 (mod p) if and only if a =+l (mod p).
9.7 Prove that for any » > 1 and any &, we have
(n-1)2|n*-1  ifandonlyif n-1]k.

9.8 A pair of twin primes is a pair of primes p and g such that ¢ — p = 2. Show that
if p and ¢ are twin primes strictly greater than 3, then pg = 8 (mod 9).
9.9 Given a prime p > 3, show that p> = 1 (mod 24).
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Chapter 10
Modular Arithmetic

10.1 The Integers Modulo n

We have seen that the congruence relations modulo a natural number n form equivalence
relations that are compatible with the arithmetic operations of addition and multiplication.
We have also seen that equivalence relations give rise to equivalence classes, and
that the set of all equivalence classes for a given equivalence relation is called the
quotient. Quotients are important mathematical constructions, which are used to
simplify mathematical problems and constructions by treating similar or equivalent
elements of a set as the same.

Definition 10.1.1. We define the set Z/n’Z of integers modulo 7 as the set of congruence
classes modulo 7.

The set of integers modulo n can be equipped with addition and multiplication in the
following way:

[a] + [b] :=[a + b]
[a][b] := [ab]

Notice that the result of these operations depends only on the equivalence classes,
not on the particular integers a and b chosen to represent the equivalence classes
[a] and [b]. Recall from Proposition 9.3.3 that we have [a] = [a’] if and only if
a = a’ (mod n), and similarly we have [b] = [b’] if and only if b = b’ (mod n).
Thus, for any a = @’ (mod n) and b = b’ (mod n), it follows from Proposition 9.1.7
thata + b =a’ + b’ (mod n) and ab = a’b’ (mod n). In other words, if [a] = [a’]
and [b] = [b’], then we have

[a] + [b] = [a'] + [#']
[al[b] = [a'][D"].

This ensures that the definitions of addition and multiplication on the integers modulo n
is well-defined on the congruence classes modulo 7.
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Remark 10.1.2. The definitions of addition and multiplication on the integers modulo n
follow a general pattern of defining functions f : A/~ — B out of quotient sets. Given
a function g : A — B, a function f : A/~ — B is said to be defined by descent from g
if f is defined by

f(lal) = g(a).

For this definition to make sense, the values of f must depend only on the equivalence
classes. In other words, if a and a’ represent the same equivalence class, i.e., if a ~ a’,
then we must have that f([a]) = f([a’]), i.e., we must have that

g(a) = g(a’).

By verifying that a ~ a’ implies f([a]) = f([a’]), we ensure that f is well-defined.
The well-definedness condition ensures that f returns the same output for all elements
of the same equivalence class.

Example 10.1.3. The well-definedness condition is important to verify, because not all
functions are well-defined with respect to the congruence relations modulo #.
Take, for example, the absolute value function a + |a| on the integers. Then the
operation
la] = lal

is not well-defined on the integers modulo 3, because 2 = —1 (mod 3) while
2] # |- 1] (mod 3).

Typical functions that are well defined on congruence classes modulo n, include
functions that are entirely built up from arithmetic operations, such as polynomials.

Theorem 10.1.4. The set Z/nZ of integers modulo n form a commutative ring, i.e., it
satisfies the following laws of arithmetic:

(x+y)+z=x+(y+2) (xy)z = x(yz)
O+x=x Ix=x
x+0=x xl =x
x—x=0 x(y+2)=xy+xz
-x+x=0 (x+y)z=xz+yz
X+y=y+x Xy = yx.

Proof. To see that (x + y) + z = x + (y + z), we first note that the variables x, y, and z
represent congruence classes of integers modulo n. Since for every congruence class
there is an integer representing it, it suffices to prove that

(lal + [D]) + [c] = [a] + ([b] + [c]).
By unfolding the definitions, this equation reduces to

[(@a+b)+c]=[a+(b+0)].

86



However, the integers (a + b) + ¢ and a + (b + ¢) are equal, so their equivalence classes
are the same.

The proofs of the other properties follow a very similar pattern. We will give the
proofs of commutativity of addition and distributivity of multiplication over addition
from the left, but leave the other proofs to the reader.

To see that x + y = y + x, it suffices to show that

la] + [b] = [b] + [a].
By unfolding the definitions, this equation reduces to
[a+Db] =[b+a4a],

and indeed those equivalence classes are the same, because a + b = b + a holds for any
two integers a and b.
To see that x(y + z) = xy + xz, it suffices to show that

[al([b] + [c]) = [al[b] + [a][c].
By unfolding the definitions, this equation reduces to
[a(b+c¢)] = [ab + ac].

Again, this identification of equivalence classes holds, because we have the equality
a(b+c¢)=ab +ac. O

10.2 Solving Linear Congruences

The simplest linear congruence is the linear congruence
ax=b (mod n).

To solve this linear congruence, we are tasked with finding an integer for which the
congruence ax = b (mod n) holds. However, we may immediately observe that if
x =x’ mod n, then the congruence ax = b (mod n) holds if and only if the congruence
ax’ = b (mod n) holds. Thus, we are really interested in solving such congruences
in Z/nZ, i.e., in finding a congruence class [x] modulo n for which the congruence
ax = b (mod n) holds.

A complete solution to the linear congruence ax = b (mod n) is a description of
the set of all congruence classes [x] modulo n that satisfy the linear congruence. We
typically list these solutions by listing the numbers 0 < x < n for which the congruence
holds. For example, the linear congruence

4x =2 (mod 6)
has two incongruent solutions modulo 6, the congruence classes of 2 and 5 modulo 6.

Definition 10.2.1. We say that a divides b modulo n if there exists an integer x for
which the congruence
ax=b (mod n).
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By the definition of congruence relations, the congruence ax = b (mod n) holds if
and only if n | ax — b, which is equivalent to the problem of finding an integer y such
that the equation

ax+ny=»>b

holds. By Theorem 4.6.4 we have an exact description of the set of solutions of this
equation: Given a solution axg + nyg = b, every solution is of the form

n a
x-xo+kd, and Y=Yy kd,
where d = gcd(a, n). Furthermore, a solution can be found if and only if d | b, and
in this case we can find x¢ and yq through Euclid’s algorithm for finding the greatest
common divisor.
Now, observe that there are exactly d incongruent solutions of the equation ax+ny = b
modulo n. Thus, we can reformulate Theorem 4.6.4 in modular arithmetic as follows.

Theorem 10.2.2. Consider two integers a and b, and a natural number n with d =
gcd(a, n). The linear congruence

ax =b (mod n)

is solvable if and only if d | b, and in this case the number of incongruent solutions is
exactly d. Furthermore, if we have one solution axy = b (mod n), then all the solutions
are of the form

n
xExo+kE

for0<k<d.
Example 10.2.3. Consider the linear congruence
6x =15 (mod 21).

The greatest common divisor of 6 and 21 is gcd(6,21) = 3. Since 15 is divisible by 3,
we expect to find exactly 3 incongruent solutions modulo 21.

To find one solution, we first express 3 as a linear combination of 6 and 21. Normally,
we would use Euclid’s algorithm to do this, but the numbers here are small enough to
immediately see that

3=4-6-21.

From this expression we find that
15=20-6-5-21.

This gives us the solution 6 - 20 = 15 (mod 21). The remaining solutions are now of
the form
x=20+k-7

for 0 < k < 3. In other words, the full set of incongruent solutions of the equation
6x =15 (mod 21) is
{6,13,20}.
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Corollary 10.2.4. The linear congruence ax = 1 (mod n) has at most one solution,
and it is solvable if and only if gcd(a, n) = 1.

The previous corollary connects integers relatively prime to n to the integers that are
invertible modulo n. Indeed, if ax = 1 (mod n) has a solution, then its solution x also
guarantees that the equality

[a][x] = [1]
holds in Z/nZ. In other words, the integer a represents an invertible congruence class
modulo 7.

Example 10.2.5. The invertible congruence classes modulo 5 are the congruence classes
of 1, 2, 3, and 4. Indeed, one can verify that

1-1=1 (mod 5) 2-3=1 (mod 5)
3-2=1 (mod 5) 4-4=1 (mod 5).

Corollary 10.2.6. Consider an integer a relatively prime to n. Then the operation
x > [alx is a bijection on Z[n’Z.

10.3 Fermat’s Little Theorem

Theorem 10.3.1 (Fermat’s Little Theorem). Consider a prime number p and an integer
a. Then the congruence
a? =a (mod p)

holds.

Fermat’s proof. Note that the congruence (—a)? = —a” (mod p) holds for all primes
P, so it suffices to prove the claim for the nonnegative integers. We proceed by induction
on a. The base case 0P =0 (mod p) clearly holds.

For the inductive step, assume that a” = a (mod p). The Binomial Theorem then

gives us that
p
P\
+1)P =
(a+1) ,;(k)“

However, note that p | ({) for any 0 < k < p. We therefore find that
(a+ 1)’ =a” +1 (mod p).
Since a? = a (mod p) holds by the induction hypothesis, the claim follows. ]

Corollary 10.3.2. Consider a prime number p and an integer a not divisible by p. Then
the congruence
a’~'=1 (mod p)

holds.

Proof. Since a is not divisible by p, it follows that a is relatively prime to p, and
therefore the claim follows from the cancellation law

ax =ay (mod p) = x=y (mod p). O
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10.4 Euler’s Theorem

Euler figured out a way to generalize Fermat’s Little Theorem to the composite moduli.
He made use of his totient function ¢, which counts for each n the number of 0 <m < n
relatively prime to n.

Theorem 10.4.1 (Euler’s Theorem). Consider a natural number n and an integer a
such that gcd(a,n) = 1. The congruence

a®™ =1 (mod n)
holds

We present two proofs of Euler’s Theorem. The first is the standard proof, and the
other is inspired by methods of group theory.

First proof of Euler’s Theorem. Consider an integer a relatively prime to n, and consider
areduced residue system r1, . . ., ¢(») modulo n. We claim that

ari,...,argn)

is again a reduced residue system modulo n. Indeed, since multiplying by a induces a
bijection on Z/nZ, we see that all integers ary, . . ., ar s(,) are incongruent. Furthermore,
the product of any two integers relatively prime to »n is again relatively prime to n, so all
the integers ar; are relatively prime to n. Since any set of ¢(n) incongruent integers
relatively prime to n form a reduced residue system, the claim follows.

Using that the integers ary, . . ., ar g(») form a reduced residue system, it follows that
¢(n) ¢(n) o(n)
1_[ ri = ar; = a®"™ l—[ ri (mod n)
i=1 i=1 i=1
Since Hlfi(ln ) ri is relatively prime to n, it follows that a®™ =1 (mod n). ]

Second proof of Euler’s Theorem. Consider the least positive integer k such that a* =
1 (mod n), and consider the relation ~ on the set of integers 0 < b < n relatively prime
to n, where

b~c if and only if Jy<ickba' = ¢ (mod n).

This relation is reflexive, because ba” = b (mod n). It is symmetric, because if ba' =
¢ (mod n) for some nonzero i, then ca*~" = ba’a** = b (mod n). Furthermore, it is
transitive, because if ba’ = ¢ and ca’ = d, then ba'*/ = d. If k < i + j, then we find
that also ba'*/~k = d. Thus, the relation ~ is an equivalence relation.

We claim that each equivalence class has size k. Indeed, for each b, the set

{b,ba,bd®,...,ba*" "}

consists of k distinct elements, because multiplying with b is a bijection. Thus we have
partitioned the set of all numbers O < b < n relatively prime to n into equivalence classes
of size k. On the other hand, the total number of elements 0 < b < n relatively prime to n
is the number ¢(n). This shows that k | ¢(n), so it follows that a®™ =1 (mod n). O
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Remark 10.4.2. The second proof of Euler’s theorem can be simplified using the language
of group theory. A group is a set G equipped with a binary operation x, y — xy, a unary
operation x + x~!, and a unit element 1, satisfying the axioms

(xy)z = x(yz)

xl=x
Ix =x
xx =1
x =1,

One can show that the set of integers modulo 7 relatively prime to n forms a group, where
the binary operation is multiplication, the unit element is the integer 1, and the inverse
x~! of an integer x modulo # is the unique solution to the equation xy = 1 (mod n).
The number of elements in this group is ¢(n). For any integer a modulo n relatively
prime to n such that a* = 1 (mod n), the set {1,a,a?,...,a*"'} is a subgroup, which
means that it is closed under the group operations. The argument where we introduced
an equivalence relation ~ to partition the set of all integers modulo n relatively prime
to n into equivalence classes of size k is an instance of a much more general result,
Lagrange’s Theorem, which asserts that the size of any subgroup of a finite group divides
the size of the entire group.

Since ¢(p) = p — 1, it follows that Fermat’s Little Theorem is also a direct corollary
of Euler’s Theorem.

Some questions about Euler’s totient function remain unresolved. While we have
seen that ¢(p) = p — 1 for any prime number p, Lehmer asked whether there is any
composite number n such that

¢(n) [ n—1.

This open problem is now known as Lehmer’s problem [Leh33].

10.5 Wilson’s Theorem

Theorem 10.5.1 (Wilson’s Theorem). A natural number n is prime if and only if
(n=1)!'=-1 (mod n).

Proof. First, we observe that the claim holds for n = 2, since 1 = —1 (mod 2).
Suppose that n is prime strictly greater than 2. Then every integer 0 < a < n has a
multiplicative inverse modulo 7, i.e., for every integer a there is an integer a~' such that

=1,

aa

Now we group the integers 1 < a < n into pairs with their own inverses. By Exercise 9.6
and the assumption that n # 2, there are exactly two integers that would pair up with
themselves because they are their own inverses: The integers 1 and —1 are the only
two integers a modulo n for which the congruence a®> = 1 (mod ) holds. The other
integers come in proper pairs (a,a”").
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Each pair (a,a™") contributes 1 to the product

n—1

(n=1)!:= l_[a.

a=1

Therefore, there is exactly one factor that contributes a something to this product: the
factor —1. Thus we see that (n — 1)! = —1 (mod n).
Conversely, suppose that (n — 1)! = —1 (mod n). Then it follows that

—(n-1)!=1 (mod n).

For any proper divisor a of n, we therefore find that a divides 1 modulo n, i.e., that there
is a solution to the linear congruence

ax =1 (mod n).
This implies that gcd(a, n) = 1. It follows that the only proper divisor of n is 1, i.e., that
n is prime. O
Exercises

10.1 Find the multiplicative inverses of 1, 2, 3, 4, 5, and 6 modulo 7.
10.2 Find the multiplicative inverses of 1, 3,7, 9, 11, 13, 17, and 19 modulo 20.
10.3 For how many congruence classes » (mod n) is the linear congruence

ax =b (mod n)

solvable?
10.4 Consider two integers a and b, and a prime number p. Show that

(a+b)? =aP + b? (mod p).
10.5 Show that
2P=2 43,721 6P72 =1 (mod p)

for any prime number p # 3.
10.6 (a) Prove that

5 =55 (mod 31).

(b) Prove that
77" =77 (mod 43).

(c) Find a prime p > 3 such that
33 =33 (mod p).

10.7 Prove that if
a" =a (mod n)

for every integer a, then n = 2 or n is odd.

92



10.8 Find all the solutions to the equation

P —=q" =p+q,

where p and g are prime numbers.
10.9 For any integer a and any prime number p, show that

aP* = aP"” (mod pk) .
10.10 Consider two distinct primes p and g, and an integer a > 0. Prove that

aP?!+a=a” +a? (mod pq)
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Chapter 11

Systems of Linear Congruences

11.1 Solving Multiple Linear Congruences Simultane-
ously

Consider the linear congruences

10x =4 (mod 12)
15x =6 (mod 21),

and suppose our goal is to find a single solution x that simultaneously solves both of
them. To start off, we observe that if we can find such a solution, then each individual
congruence must be solvable in its own right. By Theorem 10.2.2, this is the case
if and only if gcd(10,12) | 4 and ged(15,21) | 6. Indeed, ged(10,12) = 2 and
ged(15,21) = 3, so the divisibility requirements are satisfied.

By dividing through with gcd(10, 12), we see that the linear congruence 10x =
4 (mod 12) has the same set of solutions as the linear congruence 5x =2 (mod 6),
which we can work out to be x =4 (mod 6). Similarly the linear congruence 15x =
6 (mod 21) has the same set of solutions as the linear congruence 5x = 2 (mod 7),
which we can work out to be x = 6 (mod 7). Thus, the original system of linear
congruences has the same set of solutions as the system of linear congruences

x =4 (mod 6)
x=6 (mod 7).

In other words, x is simultaneously of the form 6y + 4 and of the form 7z + 6. We can
find such y and z by solving the linear Diophantine equation

6y +4=77+6,

which reduces to 6y — 7z = 2. By Theorem 4.6.1, it follows that this equation solves
if and only if ged(6,7) | 2, which is indeed the case since 6 and 7 are relatively prime.
Using the extended Euclid’s algorithm, we find that y = 5 and z = 4 gives a solution. In
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this case, we have x = 34. Note that any integer in the congruence class of 34 modulo
42 is also a solution, so we see that

x =34 (mod 42)

is a solution to our original system of linear congruences. Indeed, we can check that
10-34=28-12+4and 15-34 =24 -21 +6.

To summarize the method by which we found this solution, we first reduced each
individual linear congruence by dividing through by the greatest common divisor of
the scalar and the modulus. This way we obtained a system of linear congruences
that were individually uniquely solvable. Their solutions gave two expressions for the
variable x, which combined into a single linear Diophantine equation, which we solved
by Theorem 4.6.1 and Euclid’s algorithm. As the saying goes, any good method in
mathematics begs to become a theorem. The essential theorem to solve systems of linear
congruences is the Chinese Remainder Theorem, which we will state and prove in the
next section.

We also note that the methods we used to solve two linear congruences simultaneously
can be used to solve three or more linear congruences simultaneously. Suppose our
original problem included a third linear congruence

10x =4 (mod 12)
15x =6 (mod 21)
6x =3 (mod 15).

Then we’d simply solve the first two as before, and continue solving the system of two
linear congruences

x =34 (mod 42)
x =3 (mod 5).

This system of linear congruences has solution x = 118 (mod 210).

11.2 The Chinese Remainder Theorem

An essential step in the previous example was the reduction of a system of linear
congruences, to a system of congruences of the form

x =a (mod m)

x=b (mod n).

In the following theorem we will prove that this system of congruences is uniquely
solvable modulo mn, provided that m and n are relatively prime.

Theorem 11.2.1 (Chinese Remainder Theorem). Consider two linear congruences

x=a (mod m)

x=b (mod n),
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where m and n are relatively prime. Then there is a unique solution x modulo mn that
solves both linear congruences simultaneously.

Proof. By the first linear congruence, we find that x = my + a for some integer y.
Substituting this into the second linear congruence, we obtain that

my =b—-a (mod n).

This linear congruence has a unique solution modulo n, since gcd(m, n) = 1. Therefore,
there is exactly one integer O < y¢ < n such that x = my¢ + a. Consequently, there is
exactly one O < x < mn that solves both linear congruences simultaneously. O

11.3 Linear Congruences in Multiple Variables

11.4 Multiplicativity of Euler’s Totient Function

Exercises

11.1 Consider the congruence
xy+7x+4y =10 (mod 13).

Compute the congruence class of y modulo 13 for x =2,5,8 (mod 13).

11.2 Three musicians perform a piece with interwoven, cyclic rhythms. One plays on
the first of every four beats, the second plays on the third of every five beats, and
the third plays on the second of every third beat. The performance concludes
when all three musicians play simultaneously for the first time. How many beats
does the composition last?

11.3 Show that m | n implies ¢(m) | ¢(n).

11.4 Prove that if gcd(a, b) = d, then

d¢(a)¢(b)

¢(ab) = o)

11.5 For any n > 1, prove that

_ n¢(n)
T2

a<nged(a,n)=1

11.6 How many fractions % are there where gcd(a,b) = 1,and 0 < a < b < n. Such
fractions are called Farey fractions of order n.
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Chapter 12

Polynomial Congruences

12.1 Polynomial Congruences of Prime Moduli

Even though a polynomial

F(xX) = apx™ + an1 X"+ +ag

has at most n roots in the integers, the same is not true in modular arithmetic. A fairly
easy example, the quadratic congruence

x> =1 (mod 8)

has four solutions, the numbers 1, 3, 5, and 7. On the other hand, we will prove in this
section that the number of solutions of a polynomial congruence modulo a prime is, just
as in the integer case, at most the degree of the polynomial.

Theorem 12.1.1 (Factor Theorem in Modular Arithmetic). An integer r is a solution to

the polynomial congruence
f(x) =0 (mod n),

if and only if
f(x) = (x-r)g(x) (mod n)

for some polynomial g(x).

Proof. The proof is very similar to the proof of Theorem 6.1.5. First, we note that the
converse direction is trivial, so we focus on the forward direction. Suppose that

f(r) =0 (mod n)
and consider the polynomial f(x) — f(r). Then we have
f(x) = f(x) = f(r) (mod n),

and the factorization of f(x) — f(r) as (x — r)g(x) follows in the same way as for
Theorem 6.1.5. O
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Theorem 12.1.2 (Lagrange’s Theorem). Consider a polynomial
F(x) = anx™ + an_1 X'+ +aq,
and a prime p such that p 1 a,. Then the polynomial congruence

f(x) =0 (mod p)
has at most n solutions.

Proof. We prove the claim by induction on the degree n of the polynomial f. If f
has degree zero, then f(x) = ag, and since the leading term of f is assumed to be not
divisible by p, it follows that ag £ 0 (mod p). Thus, the polynomial f has no solutions
modulo p.

Now suppose that any polynomial congruence modulo p of degree n has at most n
solutions, and consider a polynomial congruence f(x) =0 (mod p) of degree n + 1.
If this congruence has no roots, then the number of solutions is certainly below n + 1.

On the other hand, if f(r) =0 (mod p) is a solution, then by the Factor Theorem
for Modular Arithmetic we can find a polynomial g(x) of degree n such that

f(x) = (x-r)g(x) (mod p).

It follows that the polynomial congruences f(x) =0 (mod p) and

(x=r)g(x) =0 (mod p)

have the same sets of solutions. Since p is prime, we have by Proposition 5.3.2 that
ab =0 (mod p)ifandonlyifa=0 (mod p)orb =0 (mod p). Any solution x of
the congruence (x —r)g(x) =0 (mod p) must therefore satisfy x —» = 0 (mod p)
or g(x) =0 (mod p). There are at most d solutions of the polynomial congruence
g(x) = 0 (mod p), so we conclude that there are at most d + 1 solutions to the
polynomial congruence f(x) =0 (mod p). O

The previous theorem is due to Joseph-Louis Lagrange, published in 1770 in
Réflexions sur la résolution algébrique des équations [Lag70]. Lagrange demonstrated
that the roots of polynomials can be studied by their permutations. His ideas would
eventually lead to the emergence of group theory (the study of symmetry), and Galois
theory.

While Lagrange’s theorem establishes an upper bound for the number of incongruent
solutions of a polynomial congruence modulo a prime, we can use Fermat’s Little
Theorem to find examples of polynomial congruences that have the maximum allowable
number of solutions.

Theorem 12.1.3. Consider a prime p and a positive integer n such thatn | p — 1. Then
the polynomial congruence
x" =1 (mod p)

has exactly n incongruent solutions.
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Proof. Note that the polynomial congruence x”?~! —1 =0 (mod p) has exactly p — 1
solutions. By the formula for the difference of powers, we have

(P71 =1) = (" = 1)g(x) (mod p)

for some polynomial g of degree p — 1 —n. Now we observe that the polynomial
congruences

x"=1=0 (mod p) and g(x) =0 (mod p)

have at most n and p — 1 — n solutions, respectively. Since their product has p — 1
solutions, it follows that the polynomial congruence x — 1 = 0 (mod p) must have
exactly n solutions. O

12.2 Polynomial Congruences of Composite Moduli

In the following theorem we generalize the Chinese Remainder Theorem to polynomial
congruences.

Theorem 12.2.1. Consider an integer polynomial f and consider two relatively prime
integers m and n. Then any solution of the system

f(x) =0 (mod m)

f(x) =0 (mod n)

of polynomial congruences corresponds uniquely to a solution of the polynomial
congruence

f(x) =0 (mod mn).

Proof. First note that if f(x) =0 (mod mn), then it follows that f(x) =0 (mod m)
and f(x) = 0 (mod n), simply because divisibility is transitive. Consequently, if y
is the unique nonnegative integer strictly below m such that x = y (mod m), then
f(y) = (mod m) is also a solution, and similar for the modulus n. Thus if we write
Nyn (f) for the set of roots of f modulo mn, and N,,(f) and N,,(f) for the sets of roots
of f modulo m and n, respectively, then we define a map

T Nmn(f) _>Nm(f)an(f)

by x — (x (mod m),x (mod n)). We claim that the map x is a bijection.
To see that the map r is a bijection, consider 0 < y < m and 0 < z < n such that

f(y) =0 (mod m)
f(z) =0 (mod n).

By the assumption that gcd(m, n) = 1, we obtain from the Chinese Remainder Theorem
there a unique 0 < x < mn such that

x=y (mod m)

x =z (mod n).
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Consequently, we have that f(x) = 0 (mod m) and f(x) = 0 (mod n). Applying
the Chinese Remainder Theorem once more to the number f(x), using that O is the
only integer u modulo mn such that u = 0 (mod m) and u = 0 (mod n), we find that
f(x) =0 (mod mn). |

Corollary 12.2.2. Consider n = plf‘ -~~pf,’l", where all the primes p; are distinct. A
polynomial congruence
f(x) =0 (mod n)

is solvable if and only if the polynomial congruence

fx)=0 (mod pfi)
is solvable for each i.

Proof. By induction on the number of prime factors of n. O

12.3 Reduced Polynomials Modulo a Prime

Definition 12.3.1. Two polynomials f(x) and g(x) are said to be congruent modulo a
prime p if their coefficients are congruent modulo p.

Definition 12.3.2. Two polynomials f(x) and g(x) are said to be equivalent modulo a
prime p if for each integer x the polynomial congruence

f(x) =g(x) (mod p)
holds.

Definition 12.3.3. A polynomial f(x) is said to be reduced modulo p if it is of degree
less than p.

Theorem 12.3.4. Any two equivalent reduced polynomials modulo p are congruent.

Proof. Consider two equivalent reduced polynomials f(x) and g(x). Then f(x) — g(x)
is a reduced polynomial equivalent to 0. However, if f(x) — g(x) were nonzero then its
number of roots would be strictly less than p. Since the number of roots is p, it follows
that f(x) — g(x) is congruent to the zero polynomial. O

Theorem 12.3.5. For every polynomial f(x) there is a unique reduced polynomial g(x)
equivalent to f(x).

12.4 The Elementary Symmetric Polynomials
Using the fact that equivalent reduced polynomials must be congruent, we obtain the

following factorization of the polynomial x”~! — 1 in Z/pZ, which has roots at the
numbers 1, ..., p — 1.
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Theorem 12.4.1. Consider a prime p. Then we have
Pl ol=(x-1)---(x-=p+1) (mod p)
for every x. Hence their coefficients are congruent.
Proof. Both polynomials are equivalent and reduced, so they must be congruent. O

The previous theorem provides another way of proving Wilson’s Theorem. This
proof is due to Lagrange, who was the first to publish a proof of Wilson’s theorem.

Proof of Wilson’s Theorem. The integer (p — 1)! is the constant coefficient of the
polynomial (x — 1) --- (x — p + 1), which is congruent to the polynomial x”~! — 1 with
constant coefficient —1. O

Using the elementary symmetric polynomials, we find another way of stating
Theorem 12.4.1:

Theorem 12.4.2. For each prime p and each 1 < k < p — 1 we have

er(1,...,p—1)=0 (mod p).

Exercises

12.1 Show that there are only two polynomials f such that any two values f(x) and
f(y) are relatively prime for distinct inputs x and y.

12.2 Consider a prime number p. Construct for every integer 0 < a < p a polynomial
f(x) of degree < p with coeflicients in Z/pZ such that

f(x)z{l ifx=a

0 otherwise.

Use these polynomials similarly to the basis polynomials in Lagrange’s Interpola-
tion Theorem to show that every function Z/pZ — Z/pZ is polynomial.
12.3 Define the kth power sum

prlag,...,ay) = a’f 4o +afl.
We will simply write py for px(ay,...,a,) and e for ex(ay, ..., a,).

(a) The Newton-Girard identities. Show that for all k£ we have
— k-1 k-1
Pk =e€1pk-1—epk—2 -+ + (=1)"Ter_1p1 + (=1)"" key.

Hint: This looks more complicated than it is.
(b) Prove that the congruence

¥+ +(p-1k=0 (mod p)

holds for every 0 < k < p — 1, and every prime number p.
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Chapter 13

Primitive Roots

13.1 The Multiplicative Order of an Integer Modulo »

This section is about the function n — a" — 1. We will begin by showing that this
function preserves divisibility.

Proposition 13.1.1. Suppose that m | n. Then we have
a™—-1]a" -1.

Proof. Suppose that gm = n. Then we can write

q-1
a"-1=(@?-17=(a" - I)Zak’"
k=0
by the formula for the difference of gth powers (Exercise 1.9). O

We will now define the multiplicative order of an element a modulo n. If ged(a, n) =
1, then we can simply define the multiplicative order of a to be the least positive integer
k such that

a¥=1 (mod n).

However, if gcd(a, n) # 1 then there will not be such a positive integer. In this case we
set the multiplicative order of @ modulo 7 to be 0. At first glance, this may look quite
arbitrary. However, there is a natural way of looking at it.

Definition 13.1.2. Consider an integer a and a natural number n. We define he
multiplicative order of a modulo n to be the unique natural number m such that the ideal

Ipn ={keZ] a*l =1 (mod n)}
is the ideal (m) generated by m.
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Using this definition, we see that if gcd(a, n) = 1, then indeed the order ord, (a) of
a modulo 7 is the least positive integer k such that ak = 1 (mod n). If ged(a, n) # 1,
then the ideal I, , is the zero ideal (0), which implies that ord, (a) = 0.

We saw the multiplicative order featuring in the second proof of Euler’s Theorem.
Thus, using the second proof of Euler’s theorem we immediately observe that

ord, (a) | ¢(n),

for any a and n such that gcd(a,n) = 1.

In the following theorem, which is also known as the Order Theorem, we will see
that by setting the value of the order of a modulo 7 to be 0 when ged(a, n) # 1, we prove
a powerful duality principle between multiples of ord,, (a) and numbers dividing a — 1.

Theorem 13.1.3 (Order Theorem). The multiplicative order of an integer a modulo n
satisfies the logical equivalence

ord,(a) | k & n|a* -1

Proof. We have two cases to consider: either gcd(a,n) = 1 or ged(a,n) # 1. In the
first case, ord, (a) is the least positive integer m such that

a™=1 (mod n).

It is immediate from this condition that if m | k, then it follows that a* = 1 (mod n).
Conversely, if ak=1 (mod n), then we can write k = gm + r by the Euclidean division
theorem, where 0 < r < m. It follows that

a" =a?a = a9 =4 =1 (mod n).

Since r is strictly less than m and m is the least positive integer such thata” = 1 (mod n),
it follows that » = 0. Thus we conclude that ord, (a) | k. This proves the claim in the
first case.

In the second case we have ord,(a) = 0. Then the condition that ord, (a) | k is
equivalent to the condition that k = 0. Thus, our task is to show that n | af —1if and
only if k = 0. Consider a common divisor d > 1 of @ and n. Then we have d | a* — 1, so
it follows that d | a* if and only if 4 | 1. Since we have assumed that d > 1, it therefore
follows that d { a*. However, since d divides a, the only way in which this is possible is
that k£ = 0.

ord,(a) | k. O

The previous theorem has strong implications about the function k +— a* — 1, which
we will present as a corollary of the following definition and theorem.

Definition 13.1.4. A function f : N — N is said to be a divisibility sequence if it
preserves divisibility, i.e., if it satisfies the condition

m|n= f(m)]| f(n)
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for all m and n. A divisibility sequence is said to be a strong divisibility sequence if
f(0) =0 and f preserves greatest common divisors, i.e., if

f(ged(m,n)) = ged(f(m), f(n))
for all m and n.

Theorem 13.1.5. Suppose that f : N — N is a divisibility sequence. Then the following
are equivalent:

1. There is a function g : N — N satisfying the logical equivalence
g(m) | nem| f(n).

2. The divisibility sequence f is a strong divisibility sequence.

Proof. Suppose first that a function g exists satisfying the logical equivalence

g(m) | neml f(n).
Then it follows that

d| f(ged(m,n)) & g(d) | ged(m,n)
& g(d) |mngd)|n
ed| fm)nd] f(n)
& d | ged(f(m), f(n)).

Since f(gcd(m,n)) and ged(f (m), f(n)) have the exact same set of divisors, they must
be equal.
For the converse, suppose f preserves greatest common divisors. Then consider the
ideal
Ly = {kiny + -+ + kyn, |m | f(n;) for all i}

and define the function g by letting g(m) be the unique natural number such that
I, = (g(m)). In other words, g(m) is the least natural number that can be written as a
linear combination of numbers n;, such that m | f(n;).

To see that g is a divisibility sequence, suppose that m | m’, i.e., suppose that
gm = m’. Then any linear combination of natural numbers n such that m’ | f(n) is also
a linear combination of natural numbers n such that m | f(n). In particular g(m’) is in
the ideal (g(m)), which means that g(m) | g(m’).

We claim that the function g satisfies the desired logical equivalence. Suppose first
that g(m) | n, say gg(m) = n. Note that g(m) can be written in the form k1n+- - - +k,n,,
so we can proceed by induction on r. In the base case, we have that g(m) = 0. Then it
follows that n = 0, and it also follows that every linear combination of natural numbers
n such that m | f(n) must be 0. Since f(0) = 0 by the assumption that f is a strong
divisibility sequence, this shows that m | f(n).

For the inductive step, suppose that for every m such that g(m) can be written in the
form kyny + - - - + k,n,, we have g(m) | n implies m | f(n), and consider m such that
g(m) can be written in the form

king+---+kynp +kppingig. O
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Corollary 13.1.6. Consider an integer a and two natural numbers m and n relatively

prime to a. Then
ged(a™ —1,a" — 1) = q&40mn) _ 1,

The logical equivalence in the definition of the order of an element can be used
effectively to compute the order of a power of an element in terms of the order of that
element.

Proposition 13.1.7. For any integer a of order k = ord,(a), we have

k

my _
ord, (a™) = ged(m, k)

In particular, we have ord, (a™) = k if and only if m and k are relatively prime.
Proof. We have the following chain of logical equivalences:

ord, (a)

m myl
-1 YIS TEENN
ord,(a™) |1 o n|(a™) & ordy(a) |ml < gcd(m, ord, (a))

| 1.
Thus, we see that ord,, (¢™) and k/gcd(m, k) divide the same numbers, so they must be
equal. O

Remark 13.1.8. More generally, if (P,<p) and (Q, <) are two posets, a Galois
connection between P and Q consists of order preserving maps f : P — Q and
g : O — P satisfying the logical equivalence

g(x)<py e x<g f(x)

for any x € Q and y € P. In this case, the map f is said to be the upper adjoint, and
the map g is said to be the lower adjoint of the Galois connection. Thus we have
proven in this section that the function n — a” — 1 is the upper adjoint of a Galois
connection, and we have used this fact to show that f preserves greatest common divisors.
Theorem 13.1.5 generalizes to the setting of arbitrary posets, and indeed, some readers
may recognize it as a special case of the Adjoint Functor Theorem.

Another famous Galois connection on the natural numbers ordered by divisibility is
the Fibonacci sequence. We will give the full statement of this fact in the exercises.

13.2 The Infinitude of Primes Congruent to 1 Modulo
Powers of 2

One way to show that a prime p is congruent to 1 modulo r is by finding an integer a
such that
ord,(a) = n.

By the Order Theorem and Fermat’s Little Theorem, this implies thatn | p — 1. We
will use this idea to show that there are infinitely many primes congruent to 1 modulo
any power of 2. In particular, there are infinitely many primes congruent to 1 modulo 4,
modulo 8, modulo 16, and so on.
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Theorem 13.2.1. For any positive natural number n, there are infinitely many primes
congruent to 1 modulo 2".

Proof. Since p =1 (mod 2"*!) implies that p = 1 (mod 2"), it suffices to show that
for any finite list p, ..., px of primes congruent to 1 modulo 2"*!, there is a prime
g =1 (mod 2"*!) which is not among the primes p;.

Given such a list of primes p;, let

a:=2pi---pr

and let ¢ be a prime divisor of the integer b := a®" + 1. Note that ¢ is necessarily an
odd prime, since a is even and hence b is odd. Since p; {1 b for any i, it follows that g is
not among the primes p;. Furthermore, we observe that

a” =-1 (mod q) .

This implies that ord, (a) | 2"*1 while clearly ordg(a) 1 2". Thus, we must have
ord, (a) = 2"*!, and this allows us to conclude that ¢ = 1 (mod 2"*!). O

The previous theorem is a special case of a deep theorem in analytic number theory:
Dirichlet’s Theorem. Dirichlet’s Theorem shows that for any integer a relatively prime
to n, there are infinitely many primes

p=a (mod n).

The techniques of proving Dirichlet’s Theorem are beyond the scope of this course.
However, having taken this course, you are well equipped to read LeVeque’s excellent
Topics in Number Theory [LeV56a; LeV56b], a two-volume work that contains well-
explained proofs of Dirichlet’s Theorem as well as the Prime Number Theorem.

13.3 Counting Elements of a Given Order Modulo a
Prime

Euler’s Theorem tells us that
a®™ =1 (mod n)
for every integer a such that gcd(a, n) = 1. By the Order Theorem this implies that

ord,(a) | ¢(n).

Euler’s theorem therefore gives an upper bound for the order of any element modulo 7.
For example, since 13 is a prime number, we have ¢(13) = 12, so all integers relatively
prime to 13 have an order dividing the number 12. Computing the powers of 2, for
instance, we see that ord;3(2) = 12:

m 01 2 3 4 5 6 7 8 9 10 11
2" (mod 13) 1 2 4 8 3 6 12 11 9 5 10 7.
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We can use this table to compute the orders of all the nonzero integers modulo 13. For
example, since 3 = 24 (mod 13), it follows that the order of 3 modulo 13 is 3. Similarly,
since 5 = 2% (mod 13), it follows that

5*=(29*= (2" =1 (mod 13).
Computing the orders of all the elements from 1 to 12 modulo 13 this way, we obtain:
a 1 2 3 4 5 6 7 8 9 10 11 12
ordjiz(@) 1 12 3 6 4 12 12 4 3 6 12 2.

While the orders of the integers modulo 13 might at first glance appear to be
somewhat unwieldy, there are some important patterns to uncover. First of all, we notice
that there are four integers that have the maximal possible order of 12, and the number
of integers 1 < x < 12 relatively prime to 12 is also ¢(12) = 4. This is no coincidence,
because every integer relatively prime to 13 is congruent to one of the integers

20, 2!, 22, 23, 24, 2%, 26, 27, 28, 2% 210 and 2!,
and by Proposition 13.1.7 it follows that
ordi3(2™) =12 = ged(m, 12) = 1.

However, we can go further: There are two integers that have order 6 modulo 13,
and indeed ¢(6) = 2 as well. Similar for the we find that there are ¢ (1), ¢(2), ¢(3), and
¢(4) integers of order 1, 2, 3, and 4, respectively. The following proposition tells us
that modulo a prime p, the number of integers of order £ modulo p is either O or ¢ (k).
This suggests that for any prime number p and any & | p — 1, it should be true that the
number of elements of order k is exactly ¢ (k). To prove this, we will need the following
important fact about Euler’s totient function:

Theorem 13.3.1. For every positive integer n, we have

D b =n,

d|n
where the sum ranges over the positive integers d dividing n.

Proof. The sum suggests that there is a way of partitioning the set {1, ..., n} into sets
Ay of size ¢(d), and this is indeed how this theorem is proven. For each positive divisor
d of n, define the map

fa:{l1<x<d]|ged(x,d)=1} > {1,...,n}

by x — %x, and define the set A4 to be the image of f;. Since % is a positive integer, it
follows that the map f; is injective, and therefore each set A, has exactly ¢(d) elements.
Now notice that "

y€E Ay = ged(y,n) = 7

since if x = y/ged(y, n), then ged(x, d) = ged(y/ged(y, n), n/ged(y,n)) = 1. There-
fore, it follows that for every 1 < y < n there is exactly one d | n such that y € Ay,
so it follows that the sets A, partition the set {1, ...,n}. The sum of the numbers of
elements of each A is therefore n. O
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Theorem 13.3.2. Consider a prime number p. Then there are for every k | p — 1 exactly
¢(k) integers of order k modulo p.

Proof. In this proof, let us write i (k) for the number of integers of order £ modulo p.
It is clear that (k) = 0 if kK f p — 1. On the other hand, we claim that for any k | p — 1,
we have either ¢ (k) = 0 or (k) = ¢(k). In other words, we will first show that if there
is an element a of order £ modulo p, then there are ¢(k) elements of order k.
First recall that every integer of order k£ modulo p is a solution to the polynomial
congruence
=1 (mod p).

Since ordp, (a) | p — 1 holds for any element a, this polynomial congruence as exactly
k solutions by Theorem 12.1.3. However, since we are given an element a of order k,
we can describe the set of solutions to the congruence x* = 1 (mod p): it is the set
consisting of 1, a, a?, ..., a* 1. In other words, every solution is congruent to a power
of a. The powers of a that are also of order k are characterized by Proposition 13.1.7:

ord,(a™) =k = ged(m, k) = 1.

Thus we see that there are exactly ¢ (k) integers of order k.
We have thus established that (k) < ¢(k) for every k | p — 1. Now we see that,
since every element 1 < x < p has an order modulo p, we have

n= > w)< > ek)=n

klp-1 klp-1

This inequality is therefore an equality, and since ¥ (k) < ¢(k) forevery k | p — 1 it
follows that (k) = ¢(k) forevery k | p — 1. O

13.4 Primitive Roots

We saw in the previous section that there are four integers modulo 13 that have order
12, which is the maximal possible order by Euler’s theorem. We also saw that there are
exactly ¢ (k) elements of order kK modulo p, for every k | p — 1. It follows that there are

¢(p—1)

elements of order p — 1. In other words, for every prime number p, there is an integer a

such that the integers

2 -2

l,a,a°,...,a"

form a reduced residue system modulo p. That is, there is an integer a such that
every integer x relatively prime to p is congruent to exactly one power a™, where
0 <m < p — 1. Such integers are called primitive roots. In the previous section we saw
that 2 is a primitive root of the prime 13.

Definition 13.4.1. A primitive root modulo a natural number 7 is an integer a such that
ordy(a) = ¢(n).
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Combining the previous remarks, we obtain:
Theorem 13.4.2. The number of primitive roots of a prime number p is ¢(p — 1).

In fact, it is possible to precisely classify all the natural numbers that have primitive
roots. They are the numbers
2, 4, p*, and 2p*.

where p is an odd prime. For example, 3 is a primitive root of 4, and 5 is a primitive root
of 6. The number 8, on the other hand, does not have primitive roots because ¢(8) = 4
while the nonunital odd integers 3, 5, and 7 all have order 2.

It is useful to have access to primitive roots, if they exist, because if a is a primitive
root modulo 7, then the integers

l,a,a%,...,a®m"1

form a reduced residue system modulo n. This gives a convenient way of representing
ell the elements of a reduced residue system.

Definition 13.4.3. Suppose a is a primitive root modulo 7, and let x be an integer
relatively prime to n. Then we define the index

ind, (n)
of x base a to be the unique natural number such that g« (") = x.
Theorem 13.4.4. Consider a natural number n with a primitive root a.
1. For any two integers x and y relatively prime to n, we have

x =y (mod n) S ind, (x) = ind,(y) (mod ¢(n)).

2. Furthermore, we have

ind, (xy) = indg(x) +indg(y) (mod ¢(n))
ind, (x™) = mind, (x) (mod ¢(n)).

Example 13.4.5. Solving linear congruences becomes quite a straightforward task when
a primitive root is known. For example, the congruence

14x = 6 (mod 26)

is solvable if and only if 7x = 3 (mod 13) is. By the previous theorem, this linear
congruence is equivalent to the linear congruence

ind;(7) + indy(x) = ind(3) (mod 12).

Since indy(7) = 11 and ind,(3) = 4, we find that ind;(x) = 5 (mod 12). Thus, we
conclude that
x =6 (mod 13)

is a solution of the original linear congruence.
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We now return to an old problem, the investigation of which started in Exercises 4.10
and 4.11, which asked to compute common divisors of all the integers of the form x* — x
and common divisors of all the integers of the form x> — x. In Section 6.3 we showed
that the fixed divisor of f(x) = x" — x can be determined by computing the greatest

common divisor of the values

F@)s o fU5SD.

Recall from Definition 6.3.1 that the fixed divisor of a polynomial f(x) is the greatest
common divisor of all the values of f(x). Using primitive roots we can now compute
the fixed divisors of all the polynomials of the form x" — x.

Theorem 13.4.6. Consider the polynomial x" — x, for some natural number n > 1. Its
fixed divisor is
[l »

p prime

p-1lin-1
Proof. First, we claim that a prime number p appears as a factor of the fixed divisor of
x" — x if and only if

p—-1|n-1.

To see this, suppose that p divides every integer of the form x" — x. Since x" —x =

x(x"1 = 1) and p is prime, it follows that p | x or p | x"~! = 1 for every x not divisible
by p. From this, it follows that

ord,(x) | n—1
for every x not divisible by p. In particular, if x is a primitive root modulo p, we find that
p—-1|n-1.

Thus we see that if p divides x — x for every integer x, then we must have p — 1 | n — 1.
Conversely, if p — 1 | n — 1, then it follows by Fermat’s Little Theorem that

¥ 1'=1 (mod p)
for every x not divisible by p. This implies that x(x"~! — 1) is divisible by p for every x,
completing the proof of the first claim.
To finish the proof, it remains to show that the fixed divisor of x" — x is square-free,
i.e., that for each prime number p there is an integer x such that p? { x" — x. We choose
x = p, because the integer p" — p = p(p"~! — 1) is indeed not divisible by p>. O

We conclude with an observation of Sophie Germain.

Corollary 13.4.7. Consider a natural number n, and write g = [],_1j,-1 p for the
product of all primes p such that p — 1 | n— 1. Then

a" =a (mod q)

or every integer a. Consequently, if x, y, and z are integers such that x" + y" = 7", then
y 8! q Y y 8! y
we have
x+y=z (mod g).
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Exercises

13.1

13.2

13.3

13.4
13.5

13.6

13.7

13.8

(a) Find the least primitive root g modulo 23, and give a table of the congruence
classes of its powers.

(b) Find all primitive roots modulo 23.

(¢) Foreach k | ¢(23), find all elements of order kX modulo 23.

(d) For each integer 1,...,22, find its index base g modulo 23.

(e) Solve the linear congruence

8x =9 (mod 23)

using indices.
Show thatif ab = 1 (mod n), then

ord, (a) = ord, (b).
Consider an integer a. Show that if
a®-1]a" -1,

then m | n.

Show that ord ,«_;(a) = k.

Suppose that there is an integer a of even order modulo p. Prove that there is a
unique integer of order 2 modulo p.

Prove that for any prime p and any integer a not divisible by p, there is a primitive
root g modulo p such that

_p-l
g¥P@ =g (mod p).

(a) Show that the function (x,y) — (y,x + y) is a bijection on the set of pairs
of elements x, y € Z/nZ.
(b) Show that for any m, the Fibonacci sequence is periodic modulo m. Its
period is called the Pisano period.
(c) Show that for any natural number m, there is a least positive number n such
that
m| Fy,.

We will call this number G,,. By virtue of its duality to the Fibonacci
sequence, we will call the sequence G the cofibonacci sequence.
(d) Show that G (m) satisfies the following logical equivalence

Gulnem|F,.

Conclude that the Fibonacci sequence is a strong division sequence.
Use methods similar to the previous exercise to show that the Pell numbers P,,,
which are defined by

Py :=0, P =1 and Py =2P, + Py,

form a strong division sequence.
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Chapter 14

Quadratic Residues

14.1 Quadratic Congruences

A quadratic congruence is a congruence of the form
ax>+bx+c¢=0 (mod n),

where a is assumed to be relatively prime to n. To build intuition for such quadratic
congruences, let’s first recall how to solve a quadratic equation

ax2+bx+c=0,

where a # 0. Since we have assumed that a is nonzero, we may divide through by a to

obtain the equation
, b c
X"+ —x=—-—.
a a

Completing the square, gives us the equation

X+ —
2a

b\ p* ¢ _ b -dac
4a? a 4a?

This equation has the familiar solutions

—-b +Vb? — 4ac
X= —-.:
2a
The number A := b> — 4ac is called the discriminant of the quadratic equation

2

ax’ + bx + ¢ = 0. For example, the quadratic equation x> — x — 1 has discriminant 5,

and therefore its solutions are
1++V5
7
Since the square root Vk of an integer k is an integer if and only if k is a perfect square,
we obtain the following theorem:
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Theorem 14.1.1. Consider the quadratic equation with integer coefficients
ax’ +bx+c= 0,

where a # 0. This equation has a rational solution if and only if the discriminant
A = b* — 4ac is a perfect square.

Now consider an odd prime p. Recall from Lagrange’s Theorem that a polynomial

congruence
f(x) =0 (mod p)

has at most n solutions, where # is the degree of f. It follows that a quadratic congruence
modulo a prime has at most two solutions. In the following theorem, which is analogous
to the previous theorem, we show that a quadratic congruence modulo an odd prime is
solvable if and only if its discriminant is a perfect square.

The situation is slightly different for the prime p = 2, since the quadratic congruence

X +x+1=0 (mod 2)

has no solutions, even though the discriminant is a perfect square. Indeed, as we will
see in the proof below, we will rely on the invertibility of 2 modulo p to solve general
quadratic congruences modulo p, which is not possible if p = 2.

Theorem 14.1.2. Consider a quadratic congruence
ax’> +bx+c¢=0 (mod p)

modulo an odd prime p, where a # 0 (mod p). This quadratic congruence is solvable
if and only if the discriminant A = b* — 4ac is congruent to a square modulo p.

Proof. Given that p is an odd prime and that a # 0 (mod p), it follows that 4a is
invertible modulo p. The quadratic congruence in the statement of the theorem is
therefore solvable if and only if the quadratic congruence

4a*x? + 4abx + 4ac =0 (mod p)
is solvable. Given a solution of this quadratic congruence, we calculate
(2ax + b)? = 4a°x* + 4abx + b?
= 4a’x” + 4abx + 4ac + b — 4ac
= b — dac

modulo p. This shows that the discriminant is congruent to a square modulo p.
On the other hand, if the discriminant is congruent to a square modulo p, as in

y? = b? = 4ac (mod p),

then we find, entirely analogous to the case of quadratic equations, that

_—bzxy

 2a
solves the quadratic congruence modulo p. We leave the verification that such x is
indeed a solution to the reader. O
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14.2 Quadratic Residues

We have seen in the previous section that in order to solve a quadratic congruence
ax> +bx+c¢=0 (mod p)

modulo an odd prime p, we need to determine whether the discriminant A = b? — 4ac
is congruent to a square modulo p. In other words, we need to determine whether the
discriminant is a quadratic residue modulo p, which is defined as follows:

Definition 14.2.1. An integer a is said to be a quadratic residue modulo n if there is an
integer x such that the congruence

x> =a (mod n)
holds. If no such x exists, we say that a is a quadratic nonresidue modulo n.

For example, 0 and 1 are always quadratic residues modulo any natural number 7.
The number O is called the trivial quadratic residue, and we will mostly be interested in
the nontrivial quadratic residues.

Modulo 3, the only quadratic residues are 0 and 1, since the quadratic congruence
x> =2 (mod 3) does not have solutions. In other words, every square is either divisible
by 3 or congruent to 1 modulo 3.

Similarly, O and 1 are the only quadratic residues modulo 4; that is, no square number
can be congruent to 2 or 3 modulo 4. Indeed, the square of an even number is divisible
by 4 and the square of an odd number is congruent to 1 modulo 4.

Modulo 5 we find that 0, 1, and 4 are quadratic residues, and we can similarly list all
the quadratic. The following table lists the nontrivial quadratic residues modulo »n from
4 to 10, where 0 is included as a quadratic residue if it is the square of a nonzero integer
modulo n:

n 4 5 6 7 8 9 10
quadratic residues 0,1 1,4 1,3,4 1,2,4 0,1,4 0,1,4,7 1,4,5,6,9

If we have access to a primitive root g of a prime p, then it is easy to characterize
the nontrivial quadratic residues of p as the even powers of g. This has the immediate
corollary that exactly half of the nonzero integers modulo p are quadratic residues.

Proposition 14.2.2. Consider a prime p with a primitive root g. An integer a #
0 (mod p) is a nontrivial quadratic residue modulo a p if and only if it is an even

power of g.

Proof. Consider a primitive root g modulo p. If a = g?* (mod p), then a is clearly
a quadratic residue modulo p. On the other hand, if x> = a (mod p), and x =
g¥ (mod p), then we have a = g?* (mod p).

o

Corollary 14.2.3. There are exactly (p — 1) /2 nontrivial quadratic residues modulo p
inthe set{1,...,p — 1}, and exactly (p — 1)/2 quadratic nonresidues.
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14.3 Legendre Symbols

The fact that the integers 1, 2, ..., p—1 can be split into the sets of quadratic residues and
quadratic nonresidues, which are both of size (p — 1)/2, suggests there is an interesting
dichotomy between them. We can explore this further using primitive roots. If g is a
primitive root modulo p, then the quadratic residues are precisely those integers modulo
p that can be written as an even power of g, and the quadratic nonresidues are precisely
those integers modulo p that can be written as an odd power of g. Now recall that

gm gk — gm+k7
and that the parity of the sum of two integers can be expressed in terms of the parity of
the summands: The summands m and k have the same parity if and only if m + k is

even, and likewise they have distinct parity if and only if m + k is odd. This leads to the
following multiplication rule of quadratic residues:

Proposition 14.3.1. Consider two integers a and b modulo a prime p, both not divisible
by p. Then we have

1. If both a and b are quadratic residues, or both are quadratic nonresidues, then
ab is a quadratic residue.

2. If one of a and b is a quadratic residue and the other is a quadratic nonresidue,
then ab is a quadratic nonresidue.

The previous proposition was also observed by Adrien-Marie Legendre, who
published his findings in Essai sur la théorie des nombres in 1798 [Leg98]. In this work,
he also formulated the quadratic reciprocity theorem, and attempted to prove it. His
approach, however, relied on unproven assumptions about certain functions, and was
therefore incomplete.

Definition 14.3.2. The Legendre symbol of an integer a modulo a prime p, such that
p 1 a, is defined by

(a) . {1 if a is a quadratic residue modulo p

p —1 if a is a quadratic nonresidue modulo p.

An immediate consequence of Proposition 14.2.2 is that
(g) = (~1)Mde(@
p

for any primitive root g modulo p. Using Legendre symbols, we can reformulate
Proposition 14.3.1 succinctly as the multiplicative law of Legendre symbols: For any
two integers a and b, both not multiples of p, the equality

()= GG

holds. In fact, the Legendre symbol is the unique surjective function from the integers
{1,...,p =1} to {1, —1} with this property.

118



Theorem 14.3.3. Consider an odd prime p. Then the function a (%) is the unique
surjective function f : {1,...,p — 1} — {1, =1} preserving multiplication, in the sense
that

f(ab) = f(a)f(b)

for every two nonzero integers a and b modulo p.

Proof. We have already seen that the Legendre symbol is a surjective function preserving
multiplication. Thus, our task is now to show that if f : {1,...,p -1} — {1,-1}is
any surjective function preserving multiplication, then f is the Legendre symbol. Notice
that for any primitive root g modulo p, we have

f(g™ =rfm

since every element is of the form g™, this implies that f(g) = —1. Then it follows that
f(g"™) = 1if and only if m is even, i.e., f(a) = 1 if and only if a is a quadratic residue
modulo p. O

Example 14.3.4. Recall that 2 is a primitive root of the prime 13, and is therefore a
quadratic nonresidue. Using that the square of a Legendre symbol is always 1, we can
compute the Legendre symbol (£) as follows:

8\ (2 2 2)_(2)_ !
13) \13)\13)\13) \13)
Thus, 8 is a quadratic nonresidue modulo 13.
Similarly, using that 5 = 18 (mod 13) we can compute the Legendre symbol (%)

T R-R-RIRIR-G)--

We see that 5 is also a quadratic nonresidue modulo 13.

On the other hand, again using that the square of a Legendre symbol is always 1, we
can compute the Legendre symbol (-5) as follows:

EANNEAVERVERDNEA N BATS

13/ \13)\13)\13) \13) \13)
Thus we see that 3 is a quadratic residue modulo 13. In fact, we can readily verify that
3 =47 (mod 13). The set of all nontrivial quadratic residues modulo 13 is

{1,3,4,9, 10, 12}.

'In the language of group theory: The Legendre symbol is the unique surjective group homomorphism
from the group (Z/pZ)* of invertible elements modulo p to the 2-element group S,.
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14.4 Euler’s Criterion

Euler had a deep understanding of numbers that are congruent to a square modulo
a prime. In 1748 he had published a result now known as Euler’s criterion, which
characterized precisely the squares modulo a prime.

Theorem 14.4.1 (Euler’s Criterion). Consider an integer a and an odd prime p. Then

we have
p-1
a 2

(f) (mod p)

P

Proof. First note that Fermat’s Little Theorem gives that if b := apT_l, then
b*=1 (mod p).

This implies that b = +1 (mod p).

To prove the congruence in Euler’s Criterion, consider a primitive root g modulo p,
and suppose that g” = a (mod p). Then a is a quadratic residue if and only if m is
even. Also, we note that

m(p—1)
2
is a multiple of p — 1 if and only if m is even. Thus we see that

p-1
a 2

1 (mod p).
if and only if a is a quadratic residue, and it is congruent to —1 otherwise. O

Theorem 14.4.2. For any odd prime p, the integer —1 is a quadratic residue modulo p
ifand only if p =1 (mod 4).

Proof. By Euler’s Criterion, it follows that —1 is a quadratic residue modulo p if and
only if
-1
(-7 =1 (mod p).

Since (—1)" = 1 (mod p) if and only if m is even, it follows that —1 is a quadratic
residue modulo p if and only if pT_l is even, which holds if and only if

p=1 (mod 4). O

Since primitive roots are always quadratic nonresidues, we obtain the following
corollary. Artin conjectured that there are infinitely many primes p for which 2 is a
primitive root. More generally, he conjectured that for any integer a that is neither —1
nor a perfect square, there are infinitely many primes for which a is a primitive root.

Corollary 14.4.3. If 2 is a primitive root modulo p, then p = +3 (mod 8).

We can use Theorem 14.4.2 to prove that there are infinitely many primes congruent
to 1 modulo 4. The first fifteen primes congruent to 1 modulo 4 are:

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, and 137.
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We have already seen in Theorem 13.2.1 that there are infinitely many primes
congruent to 1 modulo 2", for any positive natural number n. Here we give an
alternative proof that there are infinitely many primes congruent to 1 modulo 4, using
our earlier observation that —1 is a quadratic residue modulo a prime p if and only if
p =1 (mod 4). Similar techniques can also be used to show that there are infinitely
many primes congruent to 1 modulo 3 or 5.

Theorem 14.4.4. There are infinitely many primes congruent to 1 modulo 4.

Proof. Consider a finite set of primes py, ..., pi that are all congruent to 1 modulo 4,
and define

n=(2p1--pr)’+1.
Notice that n = 1 (mod 4) is greater than 1, and p; { n forany 1 <i < k. It follows
that for any prime divisor g of n, we have
(2p1-+-pr)’ = -1 (mod q),

showing that —1 is a quadratic residue modulo g. Since —1 is a quadratic residue modulo
g ifandonlyif g =1 (mod 4), it follows that any prime divisor ¢ of n is congruent to 1
modulo 4. Since none of the prime divisors of n are among the primes p; we started out
with, the primes p; could not have listed all the primes congruent to 1l modulo4. O

14.5 Euler’s Prime-Generating Polynomial

In the early 1770s, Leonhard Euler devised his famous prime-generating polynomial
n?+n+41.

This polynomial produces prime numbers for any 0 < n < 39. Note that
402 +40 + 41 = 40(40 + 1) + 41 = 412

isn’t prime anymore. We could easily imagine Euler pondering one day over the question
of creating a quadratic polynomial that returns a surprising amount of primes, and it
would be natural to wonder how he might have approached the problem.

Of course, there is no polynomial f(x) other than a constant polynomial such that
f(x) is a prime number for every integer x.

Proposition 14.5.1. If every value of a polynomial f(x) is prime, then f(x) is constant.

Proof. Suppose f(x) is a polynomial, all of whose values are prime. Then in particular
p = f(0) is prime. Then p | f(kp) for every integer k. Since each value of f is prime,
it follows that f(kp) = p for every integer k. This implies that f(x) — p has infinitely
many roots, i.e., f(x) is the constant polynomial with value p. O

As a reasonable starting point for our search, we take three consecutive primes of
the form
q, q+2,and g + 6.
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Table 14.1: Residues of the discriminant A = 1 — 4¢ modulo an odd prime p < g, for the
polynomial n? + n + gq.

Computations of residues for ¢ < p are omitted. A dash indicates that it was not necessary to
compute this residue, because a quadratic residue has been encountered earlier.

By Lagrange’s Interpolation Theorem, there is only one polynomial f such that f(n)
assumes those values forn =0, 1, 2:

f(n)=n*+n+gq.

Thus we are faced with the task of finding a prime g such that n> + n + ¢ is prime for
0 < n < g —2. One thing to note is that if the number

n+n+q

is composite for some 0 < n < g — 2, then it must have a prime factor below ¢. Indeed,
we have n? + n + ¢ < ¢ for such n, so if n*> + n + ¢ is composite for any 0 <n < g — 2
then it has an odd prime factor p < g. In other words, we want to find an odd prime g
such that

n+n+q#0 (mod p)

for any odd prime p < ¢. Recall from Theorem 14.1.2 that such an incongruence holds
if and only if the discriminant A = 1 — 44 is a quadratic nonresidue modulo p for any
odd prime p < g. By Euler’s Criterion, this observation finally narrows our search: We
are looking for a prime g such that

(1-4¢g)"= = -1 (mod p)

for any odd prime p < q.

We can now discover prime-generating polynomials of the form n”> + n + g by
computing the integer 1 — 4¢ (mod p) for all odd primes 3 < p < ¢. If we can find a
prime p such that 1 — 4q is a quadratic residue mod p, we may discard that prime from
the remainder of the search. This process resulted in Table 14.1, which reveals that the
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following polynomials are prime-generating polynomials, in the sense that they yield
prime numbers for all inputs 0 < n < g — 2:

n”+n+2 n?+n+11
n”+n+3 n+n+17
n”+n+5 n* +n+41.

A deep theorem, the Baker—-Heegner—Stark Theorem, shows that these are the only
prime-generating polynomials of the form n? + n + g. In other words, Euler had in fact
found the quadratic polynomial of this kind with the longest streak of primes! For this
reason, the number 41 is sometimes called Euler’s lucky prime.

Exercises

14.1 Show that a number 7 is square-free if and only if the only solution of the quadratic
congruence x> =0 (mod n)isx = 0.
14.2 Find the first prime which cannot be written in the form n* + n + ¢ for any
q €1{2,3,5,11,17,41}.
14.3 Consider an odd prime p and an integer a.
(a) Show that if ord), (a) is odd, then (£) = 1.
(b) Show that if (%) = -1, then ord, (a) is even.
(c) Give an example where p = 1 (mod 4) and where a is an integer of even
order modulo p, such that (%) =1.

(d) Show thatif p =3 (mod 4) and ord, (a) = 2k is an even number, then we

have
-
p

and a —1 (mod p). Thus, in the case where p = 3 (mod 4), the
quadratic residues are precisely the integers of odd order, and the quadratic
nonresidues are precisely the integers of even order.

(e) Show thatif p =1 (mod 4) and ord,(a) is even, then (
if ord, (a) | pT_l

(f) Combine the previous parts to show that for any odd prime p and for any
integer a # 0 (mod p), we have the identity

(ﬂ) = (1)@
p

k =

%) = 1 if and only

The following table lists the value (p — 1)/ord, (¢), with p and ¢ ranging over
the first ten odd primes (note that the value 1 indicates that ¢ is a primitive root
modulo p):
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p\¢ |3 5 7 11 13 17 19 23 29 31
3[- 1 2 1 2 1 2 1 1 2
s 1 - 1 4 1 1 2 1 2 4
7 /1 1 - 2 3 1 1 2 6 1
1mi{2 2 1 - 1 1 1 10 1 2
B34 3 1 1 - 2 1 2 4 3
171 1 1 1 4 - 2 1 1 1
91 2 6 6 1 2 - 2 1 3
22 1 1 1 2 1 1 - 2 2
2901 2 4 1 2 7 1 4 - 1
31 (1 102 1 1 1 2 3 3 -

14.4 Consider an odd prime p, an integer a, and an integer m. Show that

14.5

14.6

(a)
(b)

(b)

a" = (%) (mod p) & m= pT—l (mod ord,(a)) .

Show that (5}) = 1 if and only if p = 1 (mod 3).
For any finite set py, ..., px of primes congruent to 1 modulo 3, use the
prime divisors of

n=(pi---pe)’+3

to show that there is a prime ¢ = 1 (mod 3) that is not already among the
primes p1, ..., px. Conclude that there are infinitely many primes congruent
to 1 modulo 3.

Show that (g) = (£) holds for every prime g # 5. In other words, which
two congruence classes 1, 2, 3, or 4 modulo 5 contain the primes g such that
5 to be a quadratic residue modulo g?

For any finite set of primes py, ..., px congruent to 1 modulo 5, use the
prime divisors of

Q2p1---p)t+5
to show that there is a prime ¢ = 1 (mod 5) that is not already among the

primes pi, ..., px. Conclude that there are infinitely many primes congruent
to 1 modulo 5.

14.7 Show that the polynomial 2% — 79n + 1601 returns primes for all 0 < n < 79.
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Chapter 15
Quadratic Reciprocity

15.1 The Quadratic Character of 2

In this section we consider the question for which odd primes p we have that 2 is a
quadratic residue. By Exercise 14.3, this is equivalent to the question for which primes
p we have

p—1
ord, (2)

=0 (mod 2).

In the following table we list the quantity ﬁ for the odd primes below 50:
P

p‘3571113171923293137414347
1

-1
Orgl)(2)1211212161232,

This table shows that 2 is a quadratic residue modulo p for the primes
7,17, 23, 31, 41, 47, ....

Unlike the case where we were seeking to characterize the primes for which —1 is a
primitive root, these primes are not organized according to their residue class modulo 4.
The pattern is slightly more complicated. However, we may observe that the primes for
which 2 is a quadratic residue all happen to be close to a multiple of 8, while the primes
for which 2 is a quadratic nonresidue are further from the multiples of 8. This turns out
to be the right idea: The number 2 is a quadratic residue modulo p if and only if p is of
the form 8k + 1.

Note also that 2 is a primitive root if and only if ord,(2) = p — 1, so we see from
the previous table that 2 is a primitive root modulo p for the primes

3,5, 11, 13, 19, 29, 37, ....

However, it is not quite true that 2 is a primitive root modulo p whenever it is a quadratic
nonresidue modulo p: The first prime for which 2 is neither a quadratic residue nor a
primitive root is 43.
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Theorem 15.1.1. The Legendre symbol of 2 modulo p satisfies the identity

p

In other words, 2 is a quadratic residue if and only if p = 1 (mod 8), and it is a
quadratic nonresidue if and only if p = +3 (mod 8).

Before we start the proof, recall that one of the proofs of Fermat’s Little Theorem
was obtained by multiplying all the numbers 1, ..., p — 1 with an integer a to obtain the
congruence

a?Y(p-1D!=(p-1) (mod p).
Since (p — 1)! isn’t divisible by p, it is invertible modulo p and thus we found that
aP~' =1 (mod p).

Proof. In this proof, we will write P := pT_l so that 2P = p — 1. By Euler’s Criterion

we have (%) = 2% (mod p), which gives us the congruences
(2)pP! = 2Ppr=2.4..... (2P) (mod p)

We proceed by carefully analyzing this product of all the even positive integers below p.
If we define the numbers

-1 1
szz{—p4 J and tzz{pz J,

so that s + ¢ = P, then we can partition the set of all even positive integers below p into
two subsets

S:={2k|1<k<s} and T:={2k|s+1<k<P}

so that S consists precisely of all the even positive integers up to and possibly including
P, and T consists of all the larger even integers up to and including 2P. Note that the set
S has s elements and the set 7" has exactly ¢ elements.

The key observation is that for every integer y in T there is a unique odd integer
1 < x < Psothaty = p —x, which determines a bijection. Thus, taking the product
modulo p of all the even integers up to p amounts to taking the product of all the integers
1 < x < P with a sign change for every odd integer, of which there are 7. In other words,
we have the congruence

(%)P! =2-4----. 2P = (-1)'P! (mod p).

Since P! is not divisible by p we apply the cancellation law to obtain

B
p

We conclude the proof by observing that the parity of ¢ is determined according to the
following cases:

= 0 (mod 2) if p==+1 (mod 8)
“ |1 (mod 2) if p==+3 (mod 8).
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The previous theorem is also known as the Second Supplement of the law of Quadratic
Reciprocity. An immediate corollary of the second supplement is that

-2\ (-1} (2) ]I if p=1or3 (mod 8)
p) \pJ\p) |-1 ifp=50r7 (mod 8).

It is quite a useful theorem by itself: We will use it to show that there are infinitely
many primes of the form 8% + r for any odd number 0 < r < 8. We have already seen
in Theorem 13.2.1 that there are infinitely many primes congruent to 1 modulo 2”. In
particular, there are infinitely many primes of the form 8k + 1. It remains prove the

analogous claims for the residue classes 3, 5, and 7 modulo 8. We will be following
Sierpiniski [Sie88].

Theorem 15.1.2. There are infinitely many primes congruent to 3 modulo 8.
Proof. If a is an odd integer, then > = 1 (mod 8) so that
N, = a’+2
is congruent to 3 modulo 8. Not all prime divisors of N, can be congruent to =1 modulo

8, since if they were, then N, would likewise be congruent to +1 modulo 8. Therefore
N, has a prime divisor g so that

g = +3 (mod 8).

Since g | a® + 2, it follows that —2 is a quadratic residue modulo ¢, so ¢ # =3 (mod 8).
Thus it follows that ¢ = 3 (mod 8).

For a suitable choice of a, let p,, be the nth prime number, so that p; = 2, p, =3,
p3 = 5 and so forth. Then we define

a=paps--pns

so that any prime divisor of N, is larger than p,,. Since N, has a prime divisor congruent
to 3 modulo 8, it follows that there are arbitrarily large such primes. O

Theorem 15.1.3. There are infinitely many primes congruent to 5 modulo 8.
Proof. If a is an odd integer, then a> = 1 (mod 8) so that
N, = a’+4
is congruent to 5 modulo 8. As before, there must be a prime divisor g of N, so that
g = +3 (mod 8).

Since ¢ | a* + 4, it follows that —4 is a quadratic residue modulo ¢. This implies that
—1 is a quadratic residue modulo ¢, so that ¢ = 1 (mod 4). Since we assumed that
g #1 (mod 8), it follows that ¢ = —3 (mod 8).

For a suitable choice of a, define

a=pap3--:Pn

so that any prime divisor of N, is larger than p,,. Since N, has a prime divisor congruent
to 5 modulo 8, it follows that there are arbitrarily large such primes. O
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Theorem 15.1.4. There are infinitely many primes congruent to 7 modulo 8.

Proof. The idea of the proof is to find a natural number N of the form
N =242 - bz,

sothat N = —1 (mod 8) and N is relatively prime to any m < n. Assuming thatn > 1,
a suitable choice of ¢ and b is a := n! and b := 1. Indeed, in this case a is even, so that
2¢> -1 =-1 (mod 8).
Under these assumptions, N will have a prime factor ¢ # 1 (mod 8), and further-
more we will have
24> = b* (mod q).

Since a? and b are clearly quadratic residues modulo g, it follows that 2 is a quadratic
residue, implying that ¢ = +1 (mod 8). However, since we have chosen ¢ so that
qg # 1 (mod 8), it follows that ¢ = —1 (mod 8). Furthermore, since g is relatively
prime to any m < n, it follows that n < ¢, which shows that there are arbitrarily large
primes ¢ = —1 (mod 8). ]

15.2 The Statement of Quadratic Reciprocity

We have already established several facts about Legendre symbols. The Legendre
symbol is multiplicative, meaning that

(5)-G))

p AV

The Legendre symbol (%1) can be computed according to whether p is congruent to 1
or 3 modulo 4:

—_1)_ 1 ifp=1 (mod 4)
(p -1 ifp=3 (mod 4).

The Legendre symbol (2) can likewise be computed according to whether p is congruent
to +1 or +3 modulo 8:

2\ _J1 ifp=+I (mod 8)
(p) -1 if p=4+3 (mod 8).
We need one final piece to effectively compute Legendre symbols: a way to determine
the Legendre symbol (%) when ¢ is an odd prime. The recipe for determining (%) is
given by the law of quadratic reciprocity.

To build some intuition for what the law of quadratic reciprocity should assert, we
recall from Exercise 14.3 that the Legendre symbol of @ modulo p can be computed by

(ﬁ) = (<1) @
p
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p\q \ 35 7 11 13 17 19 23 29 31
3 - 4+ - + - + - - +
5 - - + - - 4+ - + +
7 - - + - - - + 4+ -
|+ + - - - - + - 4+
I3 |+ - - - + - 4+ + -
7 (- - - - + + - - -
9| - + + + - + + - -
23 |+ - - - + - - + +
29 |- + + - + - - + -
31 |- + + - - - 4+ - -

Table 15.1: The sign of the Legendre symbol (%), ranging over pairs of distinct odd primes p and
q.

Thus, the Legendre symbol of @ modulo p depends only of the parity of the quantity

p—1
ordy(a)’

which gives us a fairly quick way of determining the Legendre symbol (<) for small odd
primes p and g. We listed signs of the Legendre symbols of ¢ modulo p in Table 15.1.

The patterns in this table might not be immediately apparent. However, those who
did Exercise 14.6 might spot that column 5 is identical to row 5. Looking for more
identical columns and rows, we create a new table by comparing the entry in row i and
column j in Table 15.1 with the entry in row j and column i. When these two entries
are equal, we mark it with a solid black circle (@), and if they are different we mark it
with an open circle (O). This results in the following table:

pP\¢|3 5 7 11 13 17 19 23 29 31
3 ® O O @ @€ O O @ O
5 1@ o 6 6 6 6 o o o
710 @ O @ @€ O O e O
nm o e O ® 6 O O e O
3 @& & @ @ e 6 6 o o
17 @ @ @ @& © e 6 o o
D IO @ O O @ e O @ O
2310 @ O O @@ @ O ® O
29 & © 6 6 ¢ o o ° [
311 O @€ O O @@ O O @

Using this table, we quickly spot that columns 5, 13, 17, and 29 are identical to rows
5, 13, 17, and 29, respectively, which means that these columns were also identical to
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their respective rows in Table 15.1. Something special is going on with the primes
5, 13, 17, 29,
and something seems to be off about the primes
3,7, 11, 19, 23, 31.

We are very familiar with this grouping of the primes by now: The first set of primes
are all congruent to 1 modulo 4, while the second set of primes are all congruent to 3
modulo 4. These observations suggest the following:

1. If at least one of p and g is congruent to 1 modulo 4, then we have

(-

2. If both p and g are congruent to 3 modulo 4, then we have

-1
p q
Legendre and Gauss spotted these patterns towards the end of the 18th century. They

formulated it succinctly as follows:

Theorem 15.2.1 (The Law of Quadratic Reciprocity). For any two distinct odd primes

p and q we have
(z) (2) _ (-
pJ\q

Example 15.2.2. The law of quadratic reciprocity is incredibly effective in computations
of Legendre symbols. For example, since 17 and 101 are congruent to 1 modulo 4, we

22 () )

Indeed, it turns out that 442 = 17 and 57% = 17 modulo 101.
On the other hand, both 23 and 43 are congruent to 3 modulo 4, so the law of
quadratic reciprocity tells us that

BV (B (O (AN (2 (2 (B (3 oy
43)  \23)  \23)  \23/\23)  \23) \s) \s)] *—
In this case, it turns out that 182 = 23 and 252 = 23 modulo 43.

As a final example, for good measure, note that 31 and 83 are both congruent to 3
modulo 4. Using the law of quadratic reciprocity we obtain that

(31~ )
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15.3 Gauss’s Lemma

While it is customary to consider the standard residue classes modulo an odd prime p to
be the integers 0 < r < p, we have now the occasion to consider the complete residue
system of integers between —‘DT_I and pT_l.

Definition 15.3.1. The least absolute residue of an integer a modulo a natural number

n is the unique integer
ot
2 -2
such that x = @ (mod n). We will write | a],, for the least absolute residue of @ modulo

n, and we will write || a]|,, for its absolute value.

Thus, the least absolute residue of an integer @ modulo an odd prime p, which is
what we will be using this concept for, is the unique integer

_p-t_ o _p-1
)

such that x = @ (mod p). For example, the least absolute residue of 4 modulo 7 is

-3, the least absolute residue of 6 modulo 13 is 6, and the least absolute residue of 12

modulo 13 is —1. In the following table, we list the least absolute residues modulo 11:
a \ 0O 1 2 3 4 5 6 7 8 9 10
Lali \ O 1 2 3 4 5 -5 -4 -3 -2 -l.

If we consider an integer a relatively prime to an odd prime p, then multiplication
by a defines a bijection on Z/pZ. It follows that the function

X |_ax'|p:{O,...,p—l}—>{—pT_1,...,p—_1}

is also a bijection. Restricting this bijection to the set {1,..., ”T_l}, we obtain an
injective function

X |_ax'|p:{1,...,p—_1}—>{—p7_1,-~-’p7_1}'

The following lemma shows that every 1 < x < 55— occurs exactly once as the absolute
value of any number of the form |ax] .
Lemma 15.3.2. The function

Ta: {l,...,%} - {1,---,p—71}

given by rq(x) := |lax]l, is a bijection.

p—1
2

Proof. Since r, is a function between two sets of finite size ,%1’ it suffices to show that
r4 is injective. To this end, consider x and y such that r,(x) = r,(y). Since the function
x — |ax], is injective, this implies that

Lax]p = _l.ay-|p

or, equivalently, that ax — ay is divisible by p. Since a is relatively prime to p, this
implies that x — y is divisible by p, i.e., that x = y. O
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Lemma 15.3.3 (Gauss’s Lemma). Consider an odd prime p and an integer such that
p 1 a. Define u to be the number of elements x among the residue classes

a, 2a, 3a, ..., pT_la (mod p),

such that | ax]p, is negative. Then we have

-
p

Proof. Write P := (p — 1)/2. Then we have that p t P!, so suffices to show that
a
(—)P! = (-1)#P! (mod p).
p

By Euler’s Criterion we have (%) = a® (mod p), so we obtain that
a P
; P!=a" P! (mod p).

Redistributing the P factors of a of the exponent a” over P!, and using Lemma 15.3.3,

we obtain:
a’P! = (1a)(2a) - - - (Pa) = (-1)*P! (mod p). O

15.4 Eisenstein’s Proof of The Law of Quadratic Reci-
procity

Gauss was the first to prove the law of quadratic reciprocity in 1796, when he was only
19 years old. This proof was included in his seminal work, Disquisitiones Arithmeticae,
published in 1801. Gauss was very fond of this result, and throughout his life-time he
would publish seven different proofs.

The proof we will present here is due to Gotthold Eisenstein, which he published in
1844. Tt is celebrated for its simplicity and for the insightful perspective it provides on
geometric aspects of the quadratic reciprocity law.

In Eisenstein’s proof of the law of quadratic reciprocity, we will make use of the floor
function x — |x], which is a function from the rational numbers or the real numbers, to
the integers. The integer

Lx]

is the largest integer below x. In other words, its defining property is that the floor
function satisfies the logical equivalence

k < |x] =3 k<x

for every integer k and every rational or real number x. Concretely, we have the following

examples:
3 29 1
| =1 — | = ——|=-1.
R R
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Figure 15.1: In Eisenstein’s proof of quadratic reciprocity, we count the pT_l by "T_l lattice points
in the marked rectangle as the sum of the number lattice points below the diagonal and the number

of lattice points above the diagonal.

Eisenstein’s Proof of The Law of Quadratic Reciprocity. By Gauss’s Lemma it suffices
to show that

p-lg-l1
2 2

(_l)ﬂ(q,p)(_l)u(p,q) =(-1)
In other words, we have to show that

—lg-1
u(q, p) + u(p,q) = quT mod 2).

This suggests that there should be a way of splitting a set of prl qTfl points into two

subsets S and T, so that their respective number of elements have the same parities as
the quantities p(q, p) and u(p, q). There is indeed such a way. Figure 15.1 we shows
Eisenstein’s setup in case of the primes p = 17 and g = 13.

Consider the set of pT_l by qT_l lattice points in the positive quadrant of the plane;
that is, the points with positive integer coordinates within the rectangle spanned by the
four points

(0.0), (5.0). (%.3), and (0. 5).

We partition these lattice points by the diagonal of the rectangle: The set of lattice points
below the diagonal is S, and the set of lattice points above the diagonal is 7. Since the
diagonal of this rectangle is given by the line y = %x, there is no point with positive
integer coordinates on the diagonal, so there is no ambiguity as to which part a lattice
point belongs to.
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Now observe that the number |S| of lattice points in the set S is given by
p-1

-5

k=1

This formula is obtained by first recognizing that for each 1 < k < ’%1

of the form (k, ) is in the set S if and only if

, a lattice point

1<i

IN
T IR

The number of such lattice points is |_k—qJ , so the total number of elements in § is

obtained by summing up all of these totals. Similarly, the number |T'| of lattice points in
the set T is given by

qg-1

n-512)

k=1
Thus, it remains to prove that
p-l a-1
Z |k q Z |k p
Z {—J = (g, p) (mod 2) and Z {—J = p(p.q) (mod 2).
e e
We will verify these congruences separately in the following lemma. O

Lemma 15.4.1. Consider an odd prime p and an odd integer a not divisible by p, and
let u(a, p) be the quantity defined in Gauss’s Lemma. Then

p-1

Z {k—aJ = u(a,p) (mod 2).
4

2
k=1

Proof. For each k there are unique integers gy and ry such that ka = gxp + ry, where

p_ISVkSp_l.
2 2

ka L ifry >0

pl lg=1 ifre<o.
Adding up the integers | X4 | therefore amounts to adding up the integers g and
subtracting the number of integers k such that r is negative:

It follows that

V—QJ = > qrx—u(a,p).



To complete the proof, it therefore suffices to show that

p-1

2
qu =0 (mod 2).
k=1

To prove this, recall from Lemma 15.3.2 that the map k +— |rg| is a permutation of
the set {1,..., ”Tfl}. In other words, every integer from 1 to prl occurs exactly once
as an integer of the form |rg|. Since the parity of an integer is unchanged by taking its

absolute value, we have

p-l p-l p-l

2 2 2
Dire=Ylind = )k (mod 2).
k=1 k=1 k=1

On the other hand, observe that since a and p are assumed to be odd, we have the
congruences
k=ka=qrp+rr =qr+rr (mod 2).

Thus we obtain the congruences

S
|
S
|

p-1 p-1 p-1 ol
ikEEQk+irk524k+ik (mod 2).
= k=1

k=1

p-

Subtracting Y, k from both sides, we find that 3, gx =0 (mod 2). ]

Exercises

15.1 Compute the values of the following Legendre symbols:

101 137 113 139
163)° 3597 \479)° 953/
15.2 Determine whether the following quadratic congruences have solutions:
(@ x> +x+1=0 (mod 13).
() x2+x+3=0 (mod 7).
(c) 2x2+3x+5=0 (mod 17).
(d) x> +4x+8=0 (mod 23).
(e) 2x2 +3x+4=0 (mod 11).
(f) 4x2 +7x + 14 =0 (mod 31).
15.3 Show that for any prime p > 3, the Legendre symbol of 3 is determined according
to the following cases:

(3) 2{1 if p=+1 (mod 12)

p] -1 ifp==5 (mod 12).

15.4 (a) For any integer a > 2, let p be a prime factor of a* — a> + 1. Show that

ord,(a) = 12.
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(b) Use a suitable choice of a in
N, = a®+1

to show that there are infinitely many primes congruent to 1 modulo 12.
(c) For each r in the set {5,7, 11}, show that there are infinitely many primes
congruent to » modulo 12.
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Chapter 16

Arithmetic Functions

16.1 Multiplicative Functions

A function f defined on the positive integers with output in any number system, such as
the integers, real numbers, or complex numbers, is called an arithmetic function. For
example, Euler’s totient function ¢, which returns for each n the number of elements
0 < k < n relatively prime to n, is an arithmetic function. Some other important
arithmetic functions include the number of divisors function T and the sum of divisors

function o:
7(n) := Z 1 and o(n) = Z d.

d|n dln

Note that the number of divisors and the sum of divisors are not defined for n = 0.
Arithmetic functions are typically only defined on the positive integers {1,2,3,...}.
Even for functions which are defined on 0, such as Euler’s totient function, when we
consider them as arithmetic functions we will consider their domain of definition to be
the positive integers.

Other functions, which are worth naming are the constant function n — 1, which
we will simply denote by 1, and the identity function n — n, which we will denote by
id. In the pages that follow, we shall encounter two more arithmetic functions: the unit
function € and the Mobius function .

Definition 16.1.1. An arithmetic function f is said to be multiplicative if for any two
relatively prime natural numbers m and n we have

f(mn) = f(m)f(n).
Proposition 16.1.2. If f is a nonzero multiplicative function, then f(1) = 1.

Proof. Since f is assumed to be nonzero, there is a natural number n such that f(n) # 0.
Thus,

f(n) = f(n) = (1) f(n)

by the assumption that f is multiplicative. Since multiplication by a nonzero number is
injective, it follows that f(1) = 1. O

137



It follows that the constant function 1 is the only constant multiplicative function.
By the following proposition, we see that any multiplicative function is determined by
its values on prime powers.

Proposition 16.1.3. If f is a multiplicative function and n = p*' - -- pi"*, where the
primes p1,..., pk are distinct, then

f) = f(p") - f(pr*).

Proof. Since the primes p1, ..., px are assumed to be distinct, it follows that the prime
powers p'l”‘ s pkm"' are pairwise relatively prime, hence the claim follows by induction
on k. O

The following theorem provides a useful way of proving that a function is multiplica-
tive.

Theorem 16.1.4. Suppose f is a multiplicative function, and define the function F by

F(n) = Zf(d).

dln

Proof. Consider two relatively prime natural numbers m and n. Then there is a bijection
(¢, d) + cd from the set

{c | ¢ divides m} x {d | d divides n}
to the set of divisors of mn. For the inverse function, define the function
e — (ged(e,m), ged(e, n)),

which sends a divisor e of mn to a pair of divisors of m and n. To see that this is indeed
an inverse, note that if ¢ | m and d | n, then ged(d, m) = 1 so that

¢ = ged(ed, m).
Similarly, we have that gcd(c, n) = 1 so that d = gcd(cd, n). This shows that
(c,d) = (ged(ed, m), ged(cd, n)).

We also have to show that gcd(e,m) gcd(e,n) = e for any divisor e of mn. Write

¢ = ged(e,m) and d = ged(e, n). Since ¢ and d are relatively prime and since both are

divisors of e, it follows that cd | e. Now, suppose that kcd = e. Since gcd(ked, m) = ¢

it follows that ged(k,m) = 1. Similarly, gcd(k,n) = 1. However, if p is any prime

divisor of k, which divides mn, it follows that p | m or p | n. Since this is impossible, it

follows that £ = 1. This completes the proof that the map (c, d) + cd is a bijection.
Using this bijection, we find that

F(mn)= Y f(e)= > f(cd)

elmn clm d|n
- S rr@ =Y 1 £ = FmFm. o
clm d|n clm dln
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Theorem 16.1.5. The functions T and o are multiplicative.

Proof. The functions 7 and o are defined by

7(n) := Z 1, and o(n) = Z d.

dln dln

Clearly the constant function n +— 1 and the identity function n + n are multiplicative,
so it follows from Theorem 16.1.4 that 7 and o are multiplicative. O
The previous theorem implies that if n = p'ln1 e pkm"' is a product of distinct primes,

then
k m1+1 _ l

k
7(n) = n(mi +1), and o(n) = l_[ plp——l

i=1 i=1

Indeed, for any prime power p™, the divisors of p™ are the prime powers p’ where
0 <i < m. There are m + 1 powers of p in this range, and their sum is computed by the
formula for the geometric series

m+1__1

1 +p +....+.;ﬂn = fl_______
p-1

16.2 Dirichlet Convolution

The set of arithmetic functions with values taken in a fixed, chosen number system such
as the integers, the real numbers, or the complex numbers, possesses an interesting
algebraic structure that can be used effectively to obtain many algebraic results and
identities about numbers. The most important operation on arithmetic functions is
Dirichlet convolution, a way of combining two arithmetic functions f and g into a new
arithmetic function f = g.

Definition 16.2.1. Consider two arithmetic functions f and g. We define their Dirichlet
convolution f = g by

(fr8)m) = f(d)g (5).

d|n
Theorem 16.2.2. Dirichlet convolution is associative and commutative, meaning that
(f*g)xh=fx(gxh), and  frg=gxf,
respectively.
Proof. Another way of writing the Dirichlet convolution of f and g is

(fre)m) = >\ fle)s(d).
c,d

cd=n
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Since this expression is symmetric in f and g, we see immediately that the Dirichlet
convolution is commutative. Furthermore, to see that the Dirichlet convolution is
associative we make the following calculation:

(fx@)x M) = > (f*)()h(d)
c,d

cd=n

= >, D) fla)gb)h(d)

c,d a,b
cd=n ab=c

= > fla)g(b)h(d)
a,b,d
abd=n

= > ) flag(b)h(d)

ae pd
ae=n g i,

> fla)(g«h)(e)

5
ae=n

(f (g h)(n). O

Theorem 16.2.3. Let € be the function given by

) {1J 1 ifn=1
gen):=|-|=
n 0 otherwise.

Then e« f = f and f = & = f for any arithmetic function f.

Proof. Consider an arithmetic function f. Then

(ex f)(m) = Y e(@f () = £,

dln

since the only term contributing to the sum is d = 1. The fact that f * £ = f follows by
commutativity of the Dirichlet convolution. O

16.3 The Mobius Inversion Formula
Definition 16.3.1. The Mébius function u is defined by

(=1)* if n is the product of k distinct primes,
u(n) = P .
0 if p~ | n for some prime p.

For example, u(3 - 7 - 17%) = 0 because the input is divisible by 172. On the other

hand, u(3-7-17) = (-1)> = —1 because the input is the product of three distinct primes.
The following table lists the values of w(n) for the first 15 natural numbers
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
pmy |01 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1

Theorem 16.3.2. The Mébius function is multiplicative, and it satisfies
D u(d) = e(n).
d|n

In other words, u =1 = &.

Proof. 1t is immediate from the definition that the Mobius function is multiplicative.
Likewise, the arithmetic function

F(n) = > u(d)
d|n

is multiplicative by Theorem 16.1.4. Since multiplicative functions are completely
determined by their values on prime powers, and ¢ is the multiplicative function given

by
1 ifn=1
gmy=4 "1™
0 otherwise,

it suffices to show that F(p*) = 0 for any k > 1. To see this, we simply evaluate
Zu(pk)=u(p°)+u(p')+0=1—1=o, o
d|p*

Remark 16.3.3. The previous theorem could be viewed as a recurrence relation that is
satisfied by the Mdbius function:

u(n) = = > p(d)
it

Gian-Carlo Rota used this perspective to make the theory of arithmetic functions and
the Mdbius function applicable to a wide class of partially ordered sets [Rot64].

Theorem 16.3.4 (The Mobius Inversion Formula). Consider two arithmetic functions f
and g. Then we have

n
g(n>=;f(d) = f(n)=%;u(d)g(3).
In other words, if g = 1 = f then f = u * g.
Proof. If g =1« f, then
puxg=px(lxf)
=(ux1)xf
:g*f
:f.
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Conversely, if f = u * g, then

Lo f=1x(uxg)
=(lxp)*g
=Egxg

=g. i
Corollary 16.3.5. Euler’s totient function satisfies the identity
n
o(n) = ) u(d)~
din
In other words, ¢ = u = id.

Proof. By Theorem 13.3.1 we have id = 1 * ¢, so we have ¢ = u * id by the Mobius
inversion formula. o

We also give a direct proof of Corollary 16.3.5, offering a second perspective on the
totient function.

Direct proof of Corollary 16.3.5. Note that Euler’s totient function ¢ can be written in

the form
- 1
o) = Z {gcd(k,n)J '

k=1
Then it follows from Theorem 16.3.2 that

n

sy =y > ud)= Z INICEDY Zn:,u(d) = D u(@).
k=1 d|gcd(k,n) k=1 ZIZ dln ZTI! d|n

The last step follows, since there are exactly % multiples of d among the numbers from
1ton. O

16.4 Dirichlet Inverses

Definition 16.4.1. Consider an arithmetic function f such that f(1) is nonzero. Then
we define the Dirichlet inverse f~! of f by

)= and () = f_(—1) Zf‘l(d)f(g) (forn > 1).
dln
d#n

Theorem 16.4.2. For every arithmetic function f such that f(1) is nonzero, the
arithmetic function f~" is the inverse of f with respect to Dirichlet involution, in the
sense that

flef=¢ and fxf =g

Furthermore, £~ is the unique such arithmetic function.
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Proof. To show that (f* f~1)(n) = £(n) for every n > 1, there are two cases to consider.
In the case where n = 1, we have

1

v £l _ -1y =
(f+f7)M) =) () f(l)f(l)

=1=g(1).

In the case where n > 1, we have

(FfHm =Y r@r™ (5) = s m+ Y r@r (5),
din d|n
d+n

which is 0 by the definition of f~!. This completes the proof that f + f~! = &. The
equality f~! % f = & follows by commutativity of Dirichlet convolution.

Uniqueness of the inverse follows from a purely algebraic argument. Suppose that g
is another arithmetic function such that f * g = . Then we obtain

flh=ftee=flu(frg)=(f2N)rg=exg=g O

Example 16.4.3. The Dirichlet inverse of the constant function 1 is the Mobius function
u. Indeed, we saw in Theorem 16.3.2 that u = 1 = &.

Remark 16.4.4. If f~! = g for some arithmetic functions f and g, then it follows that
g~ ! = f. Indeed, the equations

f*xg=¢ and gxf=¢

simultaneously imply that g is the inverse of f and f is the inverse of g. Thus we have
that 17! = gand ! = 1.

Exercises

16.1 Show that the number 7(n) of divisors of n is odd if and only if n is a square
number.

16.2 Compute u * u.

16.3 Prove that

n

ged(k, n)u(ged(k,n)) = u(n).
k=1

16.4 (a) Show that if two out of three arithmetic functions f, g, and f * g are
multiplicative, then so is the third.
(b) Show that if f is an arithmetic function such that f(1) is nonzero, then f is
multiplicative if and only if £~! is multiplicative.
16.5 Let f be a multiplicative function.

(a) Show that
7o) = u(n) £ (n)

for every square-free natural number 7.
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(b) Show that

T p)y==f(p) and  f(pD = fp*) - f(p)?

for every prime number p.
(c) Show that

m
FIeM =208 D e f ™ |
k=1 i1+ +ig=m
[T S|
16.6 Define Jordan’s totient function Ji(n) by
Jr(n) =#{(x1,...,xx) | 1 <xq,...,xx <nand ged(xy,..., x5, n) =1},
In other words, Jordan’s totient function counts the number of k-tuples (xy, .. ., xx)
of positive integers not exceeding n such that if d simultaneously divides all
the integers xi, ..., xx and n, then d = 1. Note that J;(n) is just Euler’s totient

function ¢.

(a) Find Jp(n) for 1 <n < 12.
(b) Show that for any divisor d of n, the number of elements in the set

{(xl,...,xk)|1 <xp,...,xr <nand ged(xy,...,xx,n) = —}

QU S

is exactly Jx (d).
(c¢) Show that

ZJk(d) =n* and Zy(d) (%)k = Ji(n).
dln dln

(d) Show that Ji is a multiplicative function.
(e) Show that
Je(p™) = p*m - prmY

for any prime p and any exponent m > 1.

(f) Show that
Ji(n) = n* ]_[ (1 - ik) .
pln P
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Chapter 17

The Distribution of the Prime
Numbers

In this chapter we will study the function 7 (x), which is given by

n(x) == [{p < x | p prime}|

17.1 The Bachmann-Landau Notation for Asymptotic
Growth

In order to analyze the distribution of primes, we will make use of some handy notation
for the asymptotic growth of function, which is nowadays commonly called the Big-O
notation. The idea is due to Paul Bachmann, who used it in 1894 in his book Analytische
Zahlentheorie, and was later popularized by Edmund Landau, who also started using
the Little-O notation.

Definition 17.1.1. We say that f is of the order at most g if there is a number M such

that

|/ ()]

8(x)
for all sufficiently large x. If f is of the order at most g, we write f = O(g) or
f(x) =0(g(x)).

Definition 17.1.2. We say that f is of strictly smaller order than g if the condition

f)
lim oy =©

holds. If f is of strictly smaller order than g, we write f = 0(g) or f(x) = o(g(x)).

<M

Definition 17.1.3. We say that f is asymptotically equal to g if

lim @ =
X—00 g(x)

If f is asymptotically equal to g, we write f ~ g or f(x) ~ g(x).

1.
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Figure 17.1: The prime counting function 7 (x) compared to the functions x/log x and x/log log x,
where x ranges from 1 to 10,000. There are 1,229 primes below 10,000.

17.2 An Elementary Estimate of the Prime Counting

Function
In this section we will prove an elementary estimate for the growth of the prime counting
function:
X
n(x)=0 (—)
loglog x

While this estimate is not the strongest known estimate for the prime counting function,
which is given by the prime number theorem as the asymptotic relation

X

m(x) ~ ,
log x

it can be proven by fairly elementary means and it will be quite useful in our future
investigations in the distribution of the primes. In Figure 17.1 we have plotted the values
of m(x), x/log x and x/log log x for comparison.

First, we will use the sieve of Eratosthenes and the inclusion-exclusion principle
to obtain an exact expression for 7(x), which will serve as the starting point of our
estimates of (x). Recall that if n < x is not divisible by any prime less than +/x, then n
is prime. Thus, if we eliminate all the multiples of the primes less than /x from the set
of integers {2, ..., |x]}, then the set of primes < x remains. The inclusion-exclusion
principle allows us to compute the number of integers that are a multiple of a prime
below +/x by the formula

& .
N I el

2<pr<i<pr<VE
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However, this count also includes all the primes below v/x, of which there are (/x).
Thus, the exact number of primes below x is given by the formula:

LVx]
X
m(x) = o(Vx) + [x] - 1 + ; (-1)* Z Lm—J

2<p < <pE<Vx Pk

In order to facilitate estimation of the quantity 7 (x), we will count the number of

integers less than x not divisible by any of the primes p1, ..., p,, postponing the choice
of r. Let A(x, r) be the number of integers in the set {2, ..., |x]} that are not divisible
by any of the primes py, ..., p,. Then, as before, the number A(x, r) can be computed

exactly by the formula

_ ~ Sy _*
A(x,r) =7+ |x] l+;( 1) ( Z {p[]"'pikJ).

I1<ij<--ig<r

We also introduce the number B(x, r), which is expressed similarly except that we omit
all uses of the floor function:

B(x,r)=r+x—1+Z(—1)k( Z ;)
k=1 1<iy<---ig<r pil o pik

Since we have the inequalities 0 < x — | x] < 1 by the definition of the floor function, we
can estimate the difference |B(x,r) — A(x,r)| by

|B(x,r) — A(x,r)| < 1 +Z( Z 1) =2,

k=1 \1<ij<---ig <r

In the last equation, we used the fact that the sum of all the binomial coefficients under r
is 2", and that the number of strictly increasing sequences 1 < i} < --- < i < risexactly
the binomial coefficient (2), since any subset of {1, ..., 7} uniquely determines such a
sequence. It follows that A(x, r) < B(x,r)+2". Furthermore, we have 7(x) < r+A(x,r),

which shows that
: X
m(x) <24 ) (=D)k — 1,
2 2 oo

1<ij<---ig<r

where the term 2"*! comes from the term r + 2", which is clearly strictly smaller.
On the other hand, expanding the product gives the identity

r

(103022 )

i=1 1<ij<---ig<r

,
1
m(x) <2 4 x (1 - —)
L_][ Pi
In order to make further progress in estimating the prime counting function, we need
a bound on the Euler product []/_, (1 - #), which we will establish in the following

theorem.

Thus, we find that

147



_
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Figure 17.2: The sum of unit fractions can be estimated from below by computing the area under

the graph x — %

Theorem 17.2.1. For any natural number n > 2, we have

1—[ 1-—|< .
p logn

psn

Proof. The statement of the theorem is equivalent to:

Note that the factors on the right-hand side are the sums of the geometric series
1+ p~'+p=2+.... Thus, we can evaluate this product as

1 - 1
nl—P_1=kZ=:‘)2 Z P11 Pk

psn <pi<--<pr<n

In the sum on the right-hand side, we see exactly one occurrence of every unit fraction
% where all the prime factors of m are at most n. This sum is certainly strictly larger

thanthe sum 1 + - -- + % so that

51 1
;W]—[l__p_l.

p<n

In order to establish a lower bound for the sum of the unit fractions %

we will use that the inequality % < ﬁ holds for all x > 1. Thus we see that we can

over ] <m <n,

estimate the sum of the unit fractions % from below by computing the area under the
graph of the function x +— %, as indicated in Figure 17.2 by integrating the function
X % Doing so, we obtain:



We are now ready to prove the estimate for the prime counting function stated at the
beginning of this section.

Theorem 17.2.2.

7(x) = O (L) .
loglog x

Proof. By the previous theorem and the remarks preceding it, we have the inequality

X

m(x) <27t 4 )
log p,

Since r < p,, we obtain that

a(x) <27 4 2
logr

A suitable value for r is now |log x|, for which we obtain

m(x) < 4o.olex - X 4o g2
loglog x loglogx
The function x'°¢? is of strictly smaller order than m. Therefore we have
n(x) =0 _* ). O
loglog x

17.3 Chebyshev’s Theorem

Theorem 17.3.1. There are positive constants ¢y and ¢, such that for x > 2, we have

X
ci— <n(x) <cp
log x

log x

Proof. From Corollary 5.4.6 it follows that the central binomial coefficient (2:) divides
the least common multiple of the digits 1, ..., 2n, and therefore we have

(Zn) <lem(l,...,2n).
n

We therefore obtain the inequalities

p(2m=x(n) o l_[ p< (Zn) <lem(l,...,2n) < (2n)*%",
n

n<p<2n

It follows that
2n
(m(2n) — n(n))logn < log( ) < n(2n)log(2n).
n
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Since 2" < (2:) < 4", we conclude from the above inequalities that

n(2n) — n(n) < 2log ZL,
logn

and
nlog?2

n(2n) > Tog ()’

This last inequality gives us for x > 4 that

xJ)> [x/2]log?2 S X

7(x) = 7 (2 [E ~ log(21x/2]) — “l logx’

Thus, it remains to show that there is a positive constant ¢, such that

n(x) <cp *
logx

We will use the ineql.la.llity m(2n) —n(n) < cé@ to set up a “telescoping argument”.
Note that for any positive y we have

n(y) —n(y/2) = 7(y) = n(ly/2]) < 1+ n(2ly/2]) - n(Ly/2)).

Thus, there is a positive constant c’2 such that

144 y
n(y) —n(y/2) <c Togy

for any y > 2.
Using the fact that 7(z) < z, we get that

n(y)logy —n(y/2)log % = (n(y) —n(y/2))logy + n(y/2)log2

14 y
<logy - cj logy +y/2

244

<cy'y
Now we choose y = x/2™ with 1 < 2" < x/2. Then this becomes

24 X

X 1 X X l X
T (z—m) 085~ 7 (—2m+1) 08 St < €2 Zm
Summing over all such ms, we find that

X
) log — < cax,

X
n(x)logx — 7 (— TS

u+l

where 2# < x/2 < 2¢*!. This means, however, that x/2#*! < 2, implying that

m(x/24*1) = 0. Thus we conclude that

m(x)logx < cox. O
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